Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Immunol ; 22(1): 67-73, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33169014

RESUMEN

Severe acute respiratory syndrome coronavirus 2 infections can cause coronavirus disease 2019 (COVID-19), which manifests with a range of severities from mild illness to life-threatening pneumonia and multi-organ failure. Severe COVID-19 is characterized by an inflammatory signature, including high levels of inflammatory cytokines, alveolar inflammatory infiltrates and vascular microthrombi. Here we show that patients with severe COVID-19 produced a unique serologic signature, including an increased likelihood of IgG1 with afucosylated Fc glycans. This Fc modification on severe acute respiratory syndrome coronavirus 2 IgGs enhanced interactions with the activating Fcγ receptor FcγRIIIa; when incorporated into immune complexes, Fc afucosylation enhanced production of inflammatory cytokines by monocytes, including interleukin-6 and tumor necrosis factor. These results show that disease severity in COVID-19 correlates with the presence of proinflammatory IgG Fc structures, including afucosylated IgG1.


Asunto(s)
COVID-19/inmunología , Citocinas/inmunología , Inmunoglobulina G/inmunología , Receptores de IgG/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , COVID-19/metabolismo , COVID-19/virología , Niño , Citocinas/metabolismo , Femenino , Glicosilación , Humanos , Inmunoglobulina G/metabolismo , Interleucina-6 , Masculino , Persona de Mediana Edad , Receptores de IgG/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
2.
Immunity ; 54(6): 1290-1303.e7, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34022127

RESUMEN

Dissecting the evolution of memory B cells (MBCs) against SARS-CoV-2 is critical for understanding antibody recall upon secondary exposure. Here, we used single-cell sequencing to profile SARS-CoV-2-reactive B cells in 38 COVID-19 patients. Using oligo-tagged antigen baits, we isolated B cells specific to the SARS-CoV-2 spike, nucleoprotein (NP), open reading frame 8 (ORF8), and endemic human coronavirus (HCoV) spike proteins. SARS-CoV-2 spike-specific cells were enriched in the memory compartment of acutely infected and convalescent patients several months post symptom onset. With severe acute infection, substantial populations of endemic HCoV-reactive antibody-secreting cells were identified and possessed highly mutated variable genes, signifying preexisting immunity. Finally, MBCs exhibited pronounced maturation to NP and ORF8 over time, especially in older patients. Monoclonal antibodies against these targets were non-neutralizing and non-protective in vivo. These findings reveal antibody adaptation to non-neutralizing intracellular antigens during infection, emphasizing the importance of vaccination for inducing neutralizing spike-specific MBCs.


Asunto(s)
Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Linfocitos B/inmunología , COVID-19/inmunología , Interacciones Huésped-Patógeno/inmunología , Epítopos Inmunodominantes/inmunología , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos/genética , Linfocitos B/metabolismo , Biología Computacional/métodos , Reacciones Cruzadas/inmunología , Mapeo Epitopo , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno/genética , Humanos , Epítopos Inmunodominantes/genética , Memoria Inmunológica , Masculino , Pruebas de Neutralización , Análisis de la Célula Individual/métodos , Glicoproteína de la Espiga del Coronavirus/inmunología , Transcriptoma
3.
Immunity ; 53(6): 1230-1244.e5, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33096040

RESUMEN

Polyreactivity is the ability of a single antibody to bind to multiple molecularly distinct antigens and is a common feature of antibodies induced upon pathogen exposure. However, little is known about the role of polyreactivity during anti-influenza virus antibody responses. By analyzing more than 500 monoclonal antibodies (mAbs) derived from B cells induced by numerous influenza virus vaccines and infections, we found mAbs targeting conserved neutralizing influenza virus hemagglutinin epitopes were polyreactive. Polyreactive mAbs were preferentially induced by novel viral exposures due to their broad viral binding breadth. Polyreactivity augmented mAb viral binding strength by increasing antibody flexibility, allowing for adaption to imperfectly conserved epitopes. Lastly, we found affinity-matured polyreactive B cells were typically derived from germline polyreactive B cells that were preferentially selected to participate in B cell responses over time. Together, our data reveal that polyreactivity is a beneficial feature of antibodies targeting conserved epitopes.


Asunto(s)
Linfocitos B/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Orthomyxoviridae/inmunología , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Afinidad de Anticuerpos , Anticuerpos ampliamente neutralizantes/genética , Reacciones Cruzadas , Epítopos de Linfocito B/inmunología , Genes de Inmunoglobulinas , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Orthomyxoviridae/clasificación , Dominios Proteicos , Hipermutación Somática de Inmunoglobulina
4.
Nat Immunol ; 17(9): 1067-74, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27455421

RESUMEN

The activating natural killer (NK)-cell receptor KIR3DS1 has been linked to the outcome of various human diseases, including delayed progression of disease caused by human immunodeficiency virus type 1 (HIV-1), yet a ligand that would account for its biological effects has remained unknown. We screened 100 HLA class I proteins and found that KIR3DS1 bound to HLA-F, a result we confirmed biochemically and functionally. Primary human KIR3DS1(+) NK cells degranulated and produced antiviral cytokines after encountering HLA-F and inhibited HIV-1 replication in vitro. Activation of CD4(+) T cells triggered the transcription and surface expression of HLA-F mRNA and HLA-F protein, respectively, and induced binding of KIR3DS1. HIV-1 infection further increased the transcription of HLA-F mRNA but decreased the binding of KIR3DS1, indicative of a mechanism for evading recognition by KIR3DS1(+) NK cells. Thus, we have established HLA-F as a ligand of KIR3DS1 and have demonstrated cell-context-dependent expression of HLA-F that might explain the widespread influence of KIR3DS1 in human disease.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/inmunología , VIH-1/fisiología , Antígenos de Histocompatibilidad Clase I/metabolismo , Células Asesinas Naturales/inmunología , Receptores KIR3DS1/metabolismo , Citocinas/metabolismo , Citotoxicidad Inmunológica , Progresión de la Enfermedad , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Evasión Inmune , Células Jurkat , Ligandos , Activación de Linfocitos , Cultivo Primario de Células , Receptores KIR3DS1/agonistas , Receptores KIR3DS1/genética , Latencia del Virus , Replicación Viral
5.
Nature ; 602(7896): 314-320, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34942633

RESUMEN

Broadly neutralizing antibodies that target epitopes of haemagglutinin on the influenza virus have the potential to provide near universal protection against influenza virus infection1. However, viral mutants that escape broadly neutralizing antibodies have been reported2,3. The identification of broadly neutralizing antibody classes that can neutralize viral escape mutants is critical for universal influenza virus vaccine design. Here we report a distinct class of broadly neutralizing antibodies that target a discrete membrane-proximal anchor epitope of the haemagglutinin stalk domain. Anchor epitope-targeting antibodies are broadly neutralizing across H1 viruses and can cross-react with H2 and H5 viruses that are a pandemic threat. Antibodies that target this anchor epitope utilize a highly restricted repertoire, which encodes two public binding motifs that make extensive contacts with conserved residues in the fusion peptide. Moreover, anchor epitope-targeting B cells are common in the human memory B cell repertoire and were recalled in humans by an oil-in-water adjuvanted chimeric haemagglutinin vaccine4,5, which is a potential universal influenza virus vaccine. To maximize protection against seasonal and pandemic influenza viruses, vaccines should aim to boost this previously untapped source of broadly neutralizing antibodies that are widespread in the human memory B cell pool.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , Epítopos , Glicoproteínas Hemaglutininas del Virus de la Influenza , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Epítopos/química , Epítopos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Células B de Memoria/inmunología
6.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35183062

RESUMEN

Artificial mutagenesis and protein engineering have laid the foundation for antigenic characterization and universal vaccine design for influenza viruses. However, many methods used in this process require manual sequence editing and protein expression, limiting their efficiency and utility in high-throughput applications. More streamlined in silico tools allowing researchers to properly analyze and visualize influenza viral protein sequences with accurate nomenclature are necessary to improve antigen design and productivity. To address this need, we developed Librator, a system for analyzing and designing custom protein sequences of influenza virus hemagglutinin (HA) and neuraminidase (NA) glycoproteins. Within Librator's graphical interface, users can easily interrogate viral sequences and phylogenies, visualize antigen structures and conservation, mutate target residues and design custom antigens. Librator also provides optimized fragment design for Gibson Assembly of HA and NA expression constructs based on peptide conservation of all historical HA and NA sequences, ensuring fragments are reusable and compatible across related subtypes, thereby promoting reagent savings. Finally, the program facilitates single-cell immune profiling, epitope mapping of monoclonal antibodies and mosaic protein design. Using Librator-based antigen construction, we demonstrate that antigenicity can be readily transferred between HA molecules of H3, but not H1, lineage viruses. Altogether, Librator is a valuable tool for analyzing influenza virus HA and NA proteins and provides an efficient resource for optimizing recombinant influenza antigen synthesis.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Orthomyxoviridae , Anticuerpos Antivirales , Antígenos Virales/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Neuraminidasa/genética , Orthomyxoviridae/genética
7.
Eur J Immunol ; 49(8): 1153-1166, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31016720

RESUMEN

Cytokine-induced memory-like (CIML) NK cells are endowed with the capacity to mediate enhanced effector functions upon cytokine or activating receptor restimulation for several weeks following short-term preactivation with IL-12, IL-15, and IL-18. Promising results from a first-in-human clinical trial highlighted the clinical potential of CIML NK cells as adoptive immunotherapy for patients with hematologic malignancies. However, the mechanisms underlying CIML NK cell differentiation and increased functionality remain incompletely understood. Semaphorin 7A (SEMA7A) is a potent immunomodulator expressed in activated lymphocytes and myeloid cells. In this study, we show that SEMA7A is substantially upregulated on NK cells stimulated with cytokines, and specifically marks activated NK cells with a strong potential to release IFN-γ. In particular, preactivation of NK cells with IL-12+IL-15+IL-18 resulted in greater than tenfold upregulation of SEMA7A and enhanced expression of the ligand for SEMA7A, integrin-ß1, on CIML NK cells. Strikingly, preactivation in the presence of antibodies targeting SEMA7A lead to significantly decreased IFN-γ production following restimulation. These results imply a novel mechanism by which cytokine-enhanced SEMA7A/integrin-ß1 interaction promotes CIML NK cell differentiation and maintenance of increased functionality. Our data suggest that targeting SEMA7A/integrin-ß1 signaling might provide a novel immunotherapeutic approach to potentiate antitumor activity of CIML NK cells.


Asunto(s)
Antígenos CD/metabolismo , Memoria Inmunológica , Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Semaforinas/metabolismo , Antígenos CD/genética , Células Cultivadas , Citocinas/metabolismo , Citometría de Flujo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Humanos , Vigilancia Inmunológica , Inmunomodulación , Integrina beta1/metabolismo , Interferón gamma/metabolismo , Activación de Linfocitos , Unión Proteica , Semaforinas/genética , Regulación hacia Arriba
8.
Cell Immunol ; 348: 103998, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31733824

RESUMEN

Immunosenescence is defined as the progressive deterioration of the immune system with aging. Immunosenescence stifles the generation of protective B and T cell-mediated adaptive immunity in response to various pathogens, resulting in increased disease susceptibility and severity in the elderly population. In particular, immunosenescence has major impacts on the phenotype, function, and receptor repertoire of B and T cells in the elderly, hindering protective responses induced by seasonal influenza virus vaccination. In order to overcome the detrimental impacts of immunosenescence on protective immunity to influenza viruses, we review our current understanding of the effects of aging on adaptive immune responses to influenza and discuss current and future avenues of vaccine research for eliciting more potent anti-influenza immunity in the elderly.


Asunto(s)
Inmunidad Adaptativa/inmunología , Inmunosenescencia/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Anciano , Anciano de 80 o más Años , Humanos , Vacunación/métodos
9.
iScience ; 27(2): 108976, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38327783

RESUMEN

Coronavirus nucleocapsid protein (NP) of SARS-CoV-2 plays a central role in many functions important for virus proliferation including packaging and protecting genomic RNA. The protein shares sequence, structure, and architecture with nucleocapsid proteins from betacoronaviruses. The N-terminal domain (NPRBD) binds RNA and the C-terminal domain is responsible for dimerization. After infection, NP is highly expressed and triggers robust host immune response. The anti-NP antibodies are not protective and not neutralizing but can effectively detect viral proliferation soon after infection. Two structures of SARS-CoV-2 NPRBD were determined providing a continuous model from residue 48 to 173, including RNA binding region and key epitopes. Five structures of NPRBD complexes with human mAbs were isolated using an antigen-bait sorting. Complexes revealed a distinct complement-determining regions and unique sets of epitope recognition. This may assist in the early detection of pathogens and designing peptide-based vaccines. Mutations that significantly increase viral load were mapped on developed, full length NP model, likely impacting interactions with host proteins and viral RNA.

10.
Nat Commun ; 14(1): 2751, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173311

RESUMEN

Understanding the longitudinal dynamics of antibody immunity following heterologous SAR-CoV-2 breakthrough infection will inform the development of next-generation vaccines. Here, we track SARS-CoV-2 receptor binding domain (RBD)-specific antibody responses up to six months following Omicron BA.1 breakthrough infection in six mRNA-vaccinated individuals. Cross-reactive serum neutralizing antibody and memory B cell (MBC) responses decline by two- to four-fold through the study period. Breakthrough infection elicits minimal de novo Omicron BA.1-specific B cell responses but drives affinity maturation of pre-existing cross-reactive MBCs toward BA.1, which translates into enhanced breadth of activity across other variants. Public clones dominate the neutralizing antibody response at both early and late time points following breakthough infection, and their escape mutation profiles predict newly emergent Omicron sublineages, suggesting that convergent antibody responses continue to shape SARS-CoV-2 evolution. While the study is limited by our relatively small cohort size, these results suggest that heterologous SARS-CoV-2 variant exposure drives the evolution of B cell memory, supporting the continued development of next-generation variant-based vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Infección Irruptiva , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes
11.
Nat Commun ; 14(1): 2249, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076511

RESUMEN

Vaccination of SARS-CoV-2 convalescent individuals generates broad and potent antibody responses. Here, we isolate 459 spike-specific monoclonal antibodies (mAbs) from two individuals who were infected with the index variant of SARS-CoV-2 and later boosted with mRNA-1273. We characterize mAb genetic features by sequence assignments to the donors' personal immunoglobulin genotypes and assess antibody neutralizing activities against index SARS-CoV-2, Beta, Delta, and Omicron variants. The mAbs used a broad range of immunoglobulin heavy chain (IGH) V genes in the response to all sub-determinants of the spike examined, with similar characteristics observed in both donors. IGH repertoire sequencing and B cell lineage tracing at longitudinal time points reveals extensive evolution of SARS-CoV-2 spike-binding antibodies from acute infection until vaccination five months later. These results demonstrate that highly polyclonal repertoires of affinity-matured memory B cells are efficiently recalled by vaccination, providing a basis for the potent antibody responses observed in convalescent persons following vaccination.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Linaje de la Célula , COVID-19/prevención & control , Linfocitos B , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación
12.
Sci Immunol ; 8(90): eadi3974, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38064568

RESUMEN

Multiple studies have broadened the roles of natural killer (NK) cells functioning as purely innate lymphocytes by demonstrating that they are capable of putative antigen-specific immunological memory against multiple infectious agents including HIV-1 and influenza. However, the mechanisms underlying antigen specificity remain unknown. Here, we demonstrate that antigen-specific human NK cell memory develops upon exposure to both HIV and influenza, unified by a conserved and epitope-specific targetable mechanism largely dependent on the activating CD94/NKG2C receptor and its ligand HLA-E. We validated the permanent acquisition of antigen specificity by individual memory NK cells by single-cell cloning. We identified elevated expression of KLRG1, α4ß7, and NKG2C as biomarkers of antigen-specific NK cell memory through complex immunophenotyping. Last, we uncovered individual HLA-E-restricted peptides that may constitute the dominant NK cell response in HIV-1- and influenza-infected persons in vivo. Our findings clarify the mechanisms contributing to antigen-specific memory NK cell responses and suggest that they could be potentially targeted therapeutically for vaccines or other therapeutic interventions.


Asunto(s)
Infecciones por VIH , Antígenos HLA-E , Gripe Humana , Subfamília C de Receptores Similares a Lectina de Células NK , Humanos , Antígenos de Histocompatibilidad Clase I , Infecciones por VIH/metabolismo , Gripe Humana/metabolismo , Células Asesinas Naturales , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Antígenos HLA-E/inmunología , Antígenos HLA-E/metabolismo
13.
Cell Rep Med ; 3(2): 100531, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35243425

RESUMEN

Antibodies against the influenza virus hemagglutinin stalk afford broad protection against antigenically drifted viruses. In this issue of Cell Reports Medicine, Yegorov et al.1 identify that current vaccine formulations induce neutralizing stalk antibodies in children-a highly vulnerable population.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos ampliamente neutralizantes , Niño , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/prevención & control , Estaciones del Año , Vacunas Atenuadas
14.
Sci Adv ; 8(40): eabn3777, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36206332

RESUMEN

Patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can experience life-threatening respiratory distress, blood pressure dysregulation, and thrombosis. This is thought to be associated with an impaired activity of angiotensin-converting enzyme 2 (ACE2), which is the main entry receptor of SARS-CoV-2 and which also tightly regulates blood pressure by converting the vasoconstrictive peptide angiotensin II (AngII) to a vasopressor peptide. Here, we show that a significant proportion of hospitalized patients with COVID-19 developed autoantibodies against AngII, whose presence correlates with lower blood oxygenation, blood pressure dysregulation, and overall higher disease severity. Anti-AngII antibodies can develop upon specific immune reaction to the SARS-CoV-2 proteins Spike or receptor-binding domain (RBD), to which they can cross-bind, suggesting some epitope mimicry between AngII and Spike/RBD. These results provide important insights on how an immune reaction against SARS-CoV-2 can impair blood pressure regulation.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Angiotensina II , Autoanticuerpos , Presión Sanguínea , Epítopos/metabolismo , Humanos , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus
15.
bioRxiv ; 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36172124

RESUMEN

Understanding the evolution of antibody immunity following heterologous SAR-CoV-2 breakthrough infection will inform the development of next-generation vaccines. Here, we tracked SARS-CoV-2 receptor binding domain (RBD)-specific antibody responses up to six months following Omicron BA.1 breakthrough infection in mRNA-vaccinated individuals. Cross-reactive serum neutralizing antibody and memory B cell (MBC) responses declined by two- to four-fold through the study period. Breakthrough infection elicited minimal de novo Omicron-specific B cell responses but drove affinity maturation of pre-existing cross-reactive MBCs toward BA.1. Public clones dominated the neutralizing antibody response at both early and late time points, and their escape mutation profiles predicted newly emergent Omicron sublineages. The results demonstrate that heterologous SARS-CoV-2 variant exposure drives the evolution of B cell memory and suggest that convergent neutralizing antibody responses continue to shape viral evolution.

16.
Front Immunol ; 12: 798235, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917099

RESUMEN

While human leukocyte antigen (HLA) and HLA-like proteins comprise an overwhelming majority of known ligands for NK-cell receptors, the interactions of NK-cell receptors with non-conventional ligands, particularly carbohydrate antigens, is less well described. We previously found through a bead-based HLA screen that KIR3DS1, a formerly orphan member of the killer-cell immunoglobulin-like receptor (KIR) family, binds to HLA-F. In this study, we assessed the ligand binding profile of KIR3DS1 to cell lines using Fc fusion constructs, and discovered that KIR3DS1-Fc exhibited binding to several human cell lines including ones devoid of HLA. To identify these non-HLA ligands, we developed a magnetic enrichment-based genome-wide CRISPR/Cas9 knock-out screen approach, and identified enzymes involved in the biosynthesis of heparan sulfate as crucial for the binding of KIR3DS1-Fc to K562 cells. This interaction between KIR3DS1 and heparan sulfate was confirmed via surface plasmon resonance, and removal of heparan sulfate proteoglycans from cell surfaces abolished KIR3DS1-Fc binding. Testing of additional KIR-Fc constructs demonstrated that KIR family members containing a D0 domain (KIR3DS1, KIR3DL1, KIR3DL2, KIR2DL4, and KIR2DL5) bound to heparan sulfate, while those without a D0 domain (KIR2DL1, KIR2DL2, KIR2DL3, and KIR2DS4) did not. Overall, this study demonstrates the use of a genome-wide CRISPR/Cas9 knock-out strategy to unbiasedly identify unconventional ligands of NK-cell receptors. Furthermore, we uncover a previously underrecognized binding of various activating and inhibitory KIRs to heparan sulfate proteoglycans that may play a role in NK-cell receptor signaling and target-cell recognition.


Asunto(s)
Proteoglicanos de Heparán Sulfato/agonistas , Células Asesinas Naturales/inmunología , Receptores KIR3DS1/metabolismo , Receptores KIR/agonistas , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Estudio de Asociación del Genoma Completo , Humanos , Células K562 , Ligandos , Transducción de Señal
17.
Res Sq ; 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34312615

RESUMEN

Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have arisen that exhibit increased viral transmissibility and partial evasion of immunity induced by natural infection and vaccination. To address the specific antibody targets that were affected by recent viral variants, we generated 43 monoclonal antibodies (mAbs) from 10 convalescent donors that bound three distinct domains of the SARS-CoV-2 spike. Viral variants harboring mutations at K417, E484 and N501 could escape most of the highly potent antibodies against the receptor binding domain (RBD). Despite this, we identified 12 neutralizing mAbs against three distinct regions of the spike protein that neutralize SARS-CoV-2 and the variants of concern, including B.1.1.7 (alpha), P.1 (gamma) and B.1.617.2 (delta). Notably, antibodies targeting distinct epitopes could neutralize discrete variants, suggesting different variants may have evolved to disrupt the binding of particular neutralizing antibody classes. These results underscore that humans exposed to wildtype (WT) SARS-CoV-2 do possess neutralizing antibodies against current variants and that it is critical to induce antibodies targeting multiple distinct epitopes of the spike that can neutralize emerging variants of concern.

18.
medRxiv ; 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34751272

RESUMEN

Patients infected with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can experience life-threatening respiratory distress, blood pressure dysregulation and thrombosis. This is thought to be associated with an impaired activity of angiotensin-converting enzyme-2 (ACE-2), which is the main entry receptor of SARS-CoV-2 and which also tightly regulates blood pressure by converting the vasoconstrictive peptide angiotensin II (AngII) to a vasopressor peptide. Here, we show that a significant proportion of hospitalized COVID-19 patients developed autoantibodies against AngII, whose presence correlates with lower blood oxygenation, blood pressure dysregulation, and overall higher disease severity. Anti-AngII antibodies can develop upon specific immune reaction to the SARS-CoV-2 proteins Spike or RBD, to which they can cross-bind, suggesting some epitope mimicry between AngII and Spike/RBD. These results provide important insights on how an immune reaction against SARS-CoV-2 can impair blood pressure regulation.

19.
mBio ; 12(6): e0297521, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34781736

RESUMEN

Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have arisen that exhibit increased viral transmissibility and partial evasion of immunity induced by natural infection and vaccination. To address the specific antibody targets that were affected by recent viral variants, we generated 43 monoclonal antibodies (mAbs) from 10 convalescent donors that bound three distinct domains of the SARS-CoV-2 spike. Viral variants harboring mutations at K417, E484, and N501 could escape most of the highly potent antibodies against the receptor binding domain (RBD). Despite this, we identified 12 neutralizing mAbs against three distinct regions of the spike protein that neutralize SARS-CoV-2 and variants of concern (VOCs), including B.1.1.7 (alpha), P.1 (gamma), and B.1.617.2 (delta). Notably, antibodies targeting distinct epitopes could neutralize discrete variants, suggesting that different variants may have evolved to disrupt the binding of particular neutralizing antibody classes. These results underscore that humans exposed to the first pandemic wave of prototype SARS-CoV-2 possess neutralizing antibodies against current variants and that it is critical to induce antibodies targeting multiple distinct epitopes of the spike that can neutralize emerging variants of concern. IMPORTANCE We describe the binding and neutralization properties of a new set of human monoclonal antibodies derived from memory B cells of 10 coronavirus disease 2019 (COVID-19) convalescent donors in the first pandemic wave of prototype SARS-CoV-2. There were 12 antibodies targeting distinct epitopes on spike, including two sites on the RBD and one on the N-terminal domain (NTD), that displayed cross-neutralization of VOCs, for which distinct antibody targets could neutralize discrete variants. This work underlines that natural infection by SARS-CoV-2 induces effective cross-neutralization against only some VOCs and supports the need for COVID-19 vaccination for robust induction of neutralizing antibodies targeting multiple epitopes of the spike protein to combat the current SARS-CoV-2 VOCs and any others that might emerge in the future.


Asunto(s)
Anticuerpos Antivirales/sangre , Anticuerpos ampliamente neutralizantes/sangre , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Convalecencia , Epítopos/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Pandemias , Plasma/inmunología , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
20.
Sci Transl Med ; 13(596)2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078743

RESUMEN

Broadly neutralizing antibodies are critical for protection against both drifted and shifted influenza viruses. Here, we reveal that first exposure to the 2009 pandemic H1N1 influenza virus recalls memory B cells that are specific to the conserved receptor-binding site (RBS) or lateral patch epitopes of the hemagglutinin (HA) head domain. Monoclonal antibodies (mAbs) generated against these epitopes are broadly neutralizing against H1N1 viruses spanning 40 years of viral evolution and provide potent protection in vivo. Lateral patch-targeting antibodies demonstrated near universal binding to H1 viruses, and RBS-binding antibodies commonly cross-reacted with H3N2 viruses and influenza B viruses. Lateral patch-targeting mAbs were restricted to expressing the variable heavy-chain gene VH3-23 with or without the variable kappa-chain gene VK1-33 and often had a Y-x-R motif within the heavy-chain complementarity determining region 3 to make key contacts with HA. Moreover, lateral patch antibodies that used both VH3-23 and VK1-33 maintained neutralizing capability with recent pH1N1 strains that acquired mutations near the lateral patch. RBS-binding mAbs used a diverse repertoire but targeted the RBS epitope similarly and made extensive contacts with the major antigenic site Sb. Together, our data indicate that RBS- and lateral patch-targeting clones are abundant within the human memory B cell pool, and universal vaccine strategies should aim to drive antibodies against both conserved head and stalk epitopes.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , Epítopos , Glicoproteínas Hemaglutininas del Virus de la Influenza , Hemaglutininas , Humanos , Subtipo H3N2 del Virus de la Influenza A
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA