Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Environ Sci Technol ; 58(18): 7998-8008, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38629179

RESUMEN

Understanding microplastic exposure and effects is critical to understanding risk. Here, we used large, in-lake closed-bottom mesocosms to investigate exposure and effects on pelagic freshwater ecosystems. This article provides details about the experimental design and results on the transport of microplastics and exposure to pelagic organisms. Our experiment included three polymers of microplastics (PE, PS, and PET) ranging in density and size. Nominal concentrations ranged from 0 to 29,240 microplastics per liter on a log scale. Mesocosms enclosed natural microbial, phytoplankton, and zooplankton communities and yellow perch (Perca flavescens). We quantified and characterized microplastics in the water column and in components of the food web (biofilm on the walls, zooplankton, and fish). The microplastics in the water stratified vertically according to size and density. After 10 weeks, about 1% of the microplastics added were in the water column, 0.4% attached to biofilm on the walls, 0.01% within zooplankton, and 0.0001% in fish. Visual observations suggest the remaining >98% were in a surface slick and on the bottom. Our study suggests organisms that feed at the surface and in the benthos are likely most at risk, and demonstrates the value of measuring exposure and transport to inform experimental designs and achieve target concentrations in different matrices within toxicity tests.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Zooplancton , Animales , Lagos , Ecosistema , Cadena Alimentaria , Monitoreo del Ambiente , Fitoplancton , Percas/metabolismo
2.
Nature ; 537(7622): 689-693, 2016 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-27654921

RESUMEN

Ocean microbes drive biogeochemical cycling on a global scale. However, this cycling is constrained by viruses that affect community composition, metabolic activity, and evolutionary trajectories. Owing to challenges with the sampling and cultivation of viruses, genome-level viral diversity remains poorly described and grossly understudied, with less than 1% of observed surface-ocean viruses known. Here we assemble complete genomes and large genomic fragments from both surface- and deep-ocean viruses sampled during the Tara Oceans and Malaspina research expeditions, and analyse the resulting 'global ocean virome' dataset to present a global map of abundant, double-stranded DNA viruses complete with genomic and ecological contexts. A total of 15,222 epipelagic and mesopelagic viral populations were identified, comprising 867 viral clusters (defined as approximately genus-level groups). This roughly triples the number of known ocean viral populations and doubles the number of candidate bacterial and archaeal virus genera, providing a near-complete sampling of epipelagic communities at both the population and viral-cluster level. We found that 38 of the 867 viral clusters were locally or globally abundant, together accounting for nearly half of the viral populations in any global ocean virome sample. While two-thirds of these clusters represent newly described viruses lacking any cultivated representative, most could be computationally linked to dominant, ecologically relevant microbial hosts. Moreover, we identified 243 viral-encoded auxiliary metabolic genes, of which only 95 were previously known. Deeper analyses of four of these auxiliary metabolic genes (dsrC, soxYZ, P-II (also known as glnB) and amoC) revealed that abundant viruses may directly manipulate sulfur and nitrogen cycling throughout the epipelagic ocean. This viral catalog and functional analyses provide a necessary foundation for the meaningful integration of viruses into ecosystem models where they act as key players in nutrient cycling and trophic networks.


Asunto(s)
Ecosistema , Genoma Viral , Metagenómica , Agua de Mar/virología , Virus/genética , Virus/aislamiento & purificación , ADN Viral/análisis , Conjuntos de Datos como Asunto , Ecología , Expediciones , Genes Virales , Mapeo Geográfico , Metagenoma , Ciclo del Nitrógeno , Océanos y Mares , Azufre/metabolismo , Virus/metabolismo
3.
Environ Microbiol ; 23(12): 7278-7313, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34056822

RESUMEN

Microcystis is a cyanobacterium that forms toxic blooms in freshwater ecosystems around the world. Biological variation among taxa within the genus is apparent through genetic and phenotypic differences between strains and via the spatial and temporal distribution of strains in the environment, and this fine-scale diversity exerts strong influence over bloom toxicity. Yet we do not know how varying traits of Microcystis strains govern their environmental distribution, the tradeoffs and links between these traits, or how they are encoded at the genomic level. Here we synthesize current knowledge on the importance of diversity within Microcystis and on the genes and traits that likely underpin ecological differentiation of taxa. We briefly review spatial and environmental patterns of Microcystis diversity in the field and genetic evidence for cohesive groups within Microcystis. We then compile data on strain-level diversity regarding growth responses to environmental conditions and explore evidence for variation of community interactions across Microcystis strains. Potential links and tradeoffs between traits are identified and discussed. The resulting picture, while incomplete, highlights key knowledge gaps that need to be filled to enable new models for predicting strain-level dynamics, which influence the development, toxicity and cosmopolitan nature of Microcystis blooms.


Asunto(s)
Cianobacterias , Microcystis , Ecosistema , Microcystis/genética
4.
PLoS Comput Biol ; 14(4): e1006099, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29668682

RESUMEN

Viruses and bacteria are critical components of the human microbiome and play important roles in health and disease. Most previous work has relied on studying bacteria and viruses independently, thereby reducing them to two separate communities. Such approaches are unable to capture how these microbial communities interact, such as through processes that maintain community robustness or allow phage-host populations to co-evolve. We implemented a network-based analytical approach to describe phage-bacteria network diversity throughout the human body. We built these community networks using a machine learning algorithm to predict which phages could infect which bacteria in a given microbiome. Our algorithm was applied to paired viral and bacterial metagenomic sequence sets from three previously published human cohorts. We organized the predicted interactions into networks that allowed us to evaluate phage-bacteria connectedness across the human body. We observed evidence that gut and skin network structures were person-specific and not conserved among cohabitating family members. High-fat diets appeared to be associated with less connected networks. Network structure differed between skin sites, with those exposed to the external environment being less connected and likely more susceptible to network degradation by microbial extinction events. This study quantified and contrasted the diversity of virome-microbiome networks across the human body and illustrated how environmental factors may influence phage-bacteria interactive dynamics. This work provides a baseline for future studies to better understand system perturbations, such as disease states, through ecological networks.


Asunto(s)
Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Bacteriófagos/genética , Bacteriófagos/fisiología , Microbiota/genética , Microbiota/fisiología , Biología Computacional , Dieta , Humanos , Metagenómica , Consorcios Microbianos/genética , Consorcios Microbianos/fisiología , Modelos Biológicos , Filogeografía , Piel/microbiología , Piel/virología
5.
Environ Microbiol ; 19(3): 1149-1162, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28026093

RESUMEN

Human activities are causing a global proliferation of cyanobacterial harmful algal blooms (CHABs), yet we have limited understanding of how these events affect freshwater bacterial communities. Using weekly data from western Lake Erie in 2014, we investigated how the cyanobacterial community varied over space and time, and whether the bloom affected non-cyanobacterial (nc-bacterial) diversity and composition. Cyanobacterial community composition fluctuated dynamically during the bloom, but was dominated by Microcystis and Synechococcus OTUs. The bloom's progression revealed potential impacts to nc-bacterial diversity. Nc-bacterial evenness displayed linear, unimodal, or no response to algal pigment levels, depending on the taxonomic group. In addition, the bloom coincided with a large shift in nc-bacterial community composition. These shifts could be partitioned into components predicted by pH, chlorophyll a, temperature, and water mass movements. Actinobacteria OTUs showed particularly strong correlations to bloom dynamics. AcI-C OTUs became more abundant, while acI-A and acI-B OTUs declined during the bloom, providing evidence of niche partitioning at the sub-clade level. Thus, our observations in western Lake Erie support a link between CHABs and disturbances to bacterial community diversity and composition. Additionally, the short recovery of many taxa after the bloom indicates that bacterial communities may exhibit resilience to CHABs.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Cianobacterias/aislamiento & purificación , Floraciones de Algas Nocivas , Clorofila/metabolismo , Clorofila A , Cianobacterias/clasificación , Cianobacterias/genética , Humanos , Lagos/análisis , Lagos/microbiología , Movimientos del Agua
6.
Environ Microbiol ; 18(2): 358-71, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25627339

RESUMEN

Metagenomic and metatranscriptomic sequencing was conducted on cyanobacterial mats of the Middle Island Sinkhole (MIS), Lake Huron. Metagenomic data from 14 samples collected over 5 years were used to reconstruct genomes of two genotypes of a novel virus, designated PhV1 type A and PhV1 type B. Both viral genotypes encode and express nblA, a gene involved in degrading phycobilisomes, which are complexes of pigmented proteins that harvest light for photosynthesis. Phylogenetic analysis indicated that the viral-encoded nblA is derived from the host cyanobacterium, Phormidium MIS-PhA. The cyanobacterial host also has two complete CRISPR (clustered regularly interspaced short palindromic repeats) systems that serve as defence mechanisms for bacteria and archaea against viruses and plasmids. One 45 bp CRISPR spacer from Phormidium had 100% nucleotide identity to PhV1 type B, but this region was absent from PhV1 type A. Transcripts from PhV1 and the Phormidium CRISPR loci were detected in all six metatranscriptomic data sets (three during the day and three at night), indicating that both are transcriptionally active in the environment. These results reveal ecological and genetic interactions between viruses and cyanobacteria at MIS, highlighting the value of parallel analysis of viruses and hosts in understanding ecological interactions in natural communities.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Cianobacterias/genética , Metagenómica , Ficobilisomas/metabolismo , Virus/genética , Archaea/genética , Secuencia de Bases , Ecología , Genoma Bacteriano/genética , Genoma Viral/genética , Lagos/microbiología , Oxígeno/metabolismo , Filogenia , Plásmidos , Análisis de Secuencia de ADN
7.
Environ Sci Technol ; 50(3): 1304-12, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26752114

RESUMEN

Despite the ever-increasing prevalence of plastic debris and endocrine disrupting toxins in aquatic ecosystems, few studies describe their interactions in freshwater environments. We present a model system to investigate the deposition/desorption behaviors of low-volatility lake ecosystem toxins on microplastics in situ and in real time. Molecular interactions of gas-phase nonylphenols (NPs) with the surfaces of two common plastics, poly(styrene) and poly(ethylene terephthalate), were studied using quartz crystal microbalance and sum frequency generation vibrational spectroscopy. NP point sources were generated under two model environments: plastic on land and plastic on a freshwater surface. We found the headspace above calm water provides an excellent environment for NP deposition and demonstrate significant NP deposition on plastic within minutes at relevant concentrations. Further, NP deposits and orders differently on both plastics under humid versus dry environments. We attributed the unique deposition behaviors to surface energy changes from increased water content during the humid deposition. Lastly, nanograms of NP remained on microplastic surfaces hours after initial NP introduction and agitating conditions, illustrating feasibility for plastic-bound NPs to interact with biota and surrounding matter. Our model studies reveal important interactions between low-volatility environmental toxins and microplastics and hold potential to correlate the environmental fate of endocrine disrupting toxins in the Great Lakes with molecular behaviors.


Asunto(s)
Modelos Químicos , Fenoles/química , Tereftalatos Polietilenos/química , Poliestirenos/química , Contaminantes Químicos del Agua/química , Biota , Ecosistema , Disruptores Endocrinos/química , Sustancias Peligrosas/química , Humedad , Lagos , Plásticos , Volatilización , Residuos/análisis
8.
mSystems ; 9(3): e0110523, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38376167

RESUMEN

Understanding the ecological impacts of viruses on natural and engineered ecosystems relies on the accurate identification of viral sequences from community sequencing data. To maximize viral recovery from metagenomes, researchers frequently combine viral identification tools. However, the effectiveness of this strategy is unknown. Here, we benchmarked combinations of six widely used informatics tools for viral identification and analysis (VirSorter, VirSorter2, VIBRANT, DeepVirFinder, CheckV, and Kaiju), called "rulesets." Rulesets were tested against mock metagenomes composed of taxonomically diverse sequence types and diverse aquatic metagenomes to assess the effects of the degree of viral enrichment and habitat on tool performance. We found that six rulesets achieved equivalent accuracy [Matthews Correlation Coefficient (MCC) = 0.77, Padj ≥ 0.05]. Each contained VirSorter2, and five used our "tuning removal" rule designed to remove non-viral contamination. While DeepVirFinder, VIBRANT, and VirSorter were each found once in these high-accuracy rulesets, they were not found in combination with each other: combining tools does not lead to optimal performance. Our validation suggests that the MCC plateau at 0.77 is partly caused by inaccurate labeling within reference sequence databases. In aquatic metagenomes, our highest MCC ruleset identified more viral sequences in virus-enriched (44%-46%) than in cellular metagenomes (7%-19%). While improved algorithms may lead to more accurate viral identification tools, this should be done in tandem with careful curation of sequence databases. We recommend using the VirSorter2 ruleset and our empirically derived tuning removal rule. Our analysis provides insight into methods for in silico viral identification and will enable more robust viral identification from metagenomic data sets. IMPORTANCE: The identification of viruses from environmental metagenomes using informatics tools has offered critical insights in microbial ecology. However, it remains difficult for researchers to know which tools optimize viral recovery for their specific study. In an attempt to recover more viruses, studies are increasingly combining the outputs from multiple tools without validating this approach. After benchmarking combinations of six viral identification tools against mock metagenomes and environmental samples, we found that these tools should only be combined cautiously. Two to four tool combinations maximized viral recovery and minimized non-viral contamination compared with either the single-tool or the five- to six-tool ones. By providing a rigorous overview of the behavior of in silico viral identification strategies and a pipeline to replicate our process, our findings guide the use of existing viral identification tools and offer a blueprint for feature engineering of new tools that will lead to higher-confidence viral discovery in microbiome studies.


Asunto(s)
Benchmarking , Virus , Ecosistema , Metagenómica/métodos , Bases de Datos de Ácidos Nucleicos
9.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38552150

RESUMEN

Viruses impact microbial systems through killing hosts, horizontal gene transfer, and altering cellular metabolism, consequently impacting nutrient cycles. A virus-infected cell, a "virocell," is distinct from its uninfected sister cell as the virus commandeers cellular machinery to produce viruses rather than replicate cells. Problematically, virocell responses to the nutrient-limited conditions that abound in nature are poorly understood. Here we used a systems biology approach to investigate virocell metabolic reprogramming under nutrient limitation. Using transcriptomics, proteomics, lipidomics, and endo- and exo-metabolomics, we assessed how low phosphate (low-P) conditions impacted virocells of a marine Pseudoalteromonas host when independently infected by two unrelated phages (HP1 and HS2). With the combined stresses of infection and nutrient limitation, a set of nested responses were observed. First, low-P imposed common cellular responses on all cells (virocells and uninfected cells), including activating the canonical P-stress response, and decreasing transcription, translation, and extracellular organic matter consumption. Second, low-P imposed infection-specific responses (for both virocells), including enhancing nitrogen assimilation and fatty acid degradation, and decreasing extracellular lipid relative abundance. Third, low-P suggested virocell-specific strategies. Specifically, HS2-virocells regulated gene expression by increasing transcription and ribosomal protein production, whereas HP1-virocells accumulated host proteins, decreased extracellular peptide relative abundance, and invested in broader energy and resource acquisition. These results suggest that although environmental conditions shape metabolism in common ways regardless of infection, virocell-specific strategies exist to support viral replication during nutrient limitation, and a framework now exists for identifying metabolic strategies of nutrient-limited virocells in nature.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Bacteriófagos/fisiología , Proteómica , Fosfatos/metabolismo , Metabolómica , Biología de Sistemas , Transcriptoma , Reprogramación Metabólica
10.
Environ Microbiol ; 15(8): 2306-18, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23489642

RESUMEN

Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and metabolic capacity. However, our ability to understand and quantify phage-host interactions is technique-limited. Here, we introduce phageFISH - a markedly improved geneFISH protocol that increases gene detection efficiency from 40% to > 92% and is optimized for detection and visualization of intra- and extracellular phage DNA. The application of phageFISH to characterize infection dynamics in a marine podovirus-gammaproteobacterial host model system corroborated classical metrics (qPCR, plaque assay, FVIC, DAPI) and outperformed most of them to reveal new biology. PhageFISH detected both replicating and encapsidated (intracellular and extracellular) phage DNA, while simultaneously identifying and quantifying host cells during all stages of infection. Additionally, phageFISH allowed per-cell relative measurements of phage DNA, enabling single-cell documentation of infection status (e.g. early vs late stage infections). Further, it discriminated between two waves of infection, which no other measurement could due to population-averaged signals. Together, these findings richly characterize the infection dynamics of a novel model phage-host system, and debut phageFISH as a much-needed tool for studying phage-host interactions in the laboratory, with great promise for environmental surveys and lineage-specific population ecology of free phages.


Asunto(s)
Bacteriófagos/genética , Interacciones Huésped-Patógeno , Espacio Intracelular/virología , Podoviridae/fisiología , Pseudoalteromonas/virología , Virología/métodos , Reproducibilidad de los Resultados , Agua de Mar/microbiología , Agua de Mar/virología
11.
ISME J ; 17(6): 903-915, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37031343

RESUMEN

Meromictic Lake Cadagno is a permanently stratified system with a persistent microbial bloom within the oxic-anoxic boundary called the chemocline. The association between oxygenic and anoxygenic photosynthesis within the chemocline has been known for at least two decades. Although anoxygenic purple and green sulfur bacteria have been well studied, reports on oxygenic phytoplankton have remained sparse since their discovery in the 1920s. Nearly a century later, this study presents the first near-complete genome of a photosynthetic microbial eukaryote from the chemocline of Lake Cadagno, provisionally named Chlorella-like MAG. The 18.9 Mbp nuclear genome displays a high GC content (71.5%), and the phylogenetic placement suggests that it is a novel species of the genus Chlorella of Chlorophytes. Functional annotation of the Chlorella-like metagenome-assembled genome predicted 10,732 protein-coding genes, with an approximate 0.6% proportion potentially involved in carbon, sulfur, and nitrogen (C, N, and S) metabolism. In addition to C4 photosynthesis, this study detected genes for heat shock proteins (HSPs) in the Chlorella-like algae, consistent with the other Chlorella species. Altogether, the genomic insights in this study suggest the cooperation of photosynthetic algae with phototrophic sulfur bacteria via C, N, and S metabolism, which may aid their collective persistence in the Lake Cadagno chemocline. Furthermore, this work additionally presents the chloroplast genome of Cryptomonas-like species, which was likely to be presumed as cyanobacteria in previous studies because of the presence of phycobilisomes.


Asunto(s)
Chlorella , Lagos , Lagos/microbiología , Chlorella/genética , Filogenia , Bacterias/metabolismo , Genómica , Azufre/metabolismo
12.
Microbiome ; 11(1): 28, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36803638

RESUMEN

BACKGROUND: Microbiomes are now recognized as the main drivers of ecosystem function ranging from the oceans and soils to humans and bioreactors. However, a grand challenge in microbiome science is to characterize and quantify the chemical currencies of organic matter (i.e., metabolites) that microbes respond to and alter. Critical to this has been the development of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), which has drastically increased molecular characterization of complex organic matter samples, but challenges users with hundreds of millions of data points where readily available, user-friendly, and customizable software tools are lacking. RESULTS: Here, we build on years of analytical experience with diverse sample types to develop MetaboDirect, an open-source, command-line-based pipeline for the analysis (e.g., chemodiversity analysis, multivariate statistics), visualization (e.g., Van Krevelen diagrams, elemental and molecular class composition plots), and presentation of direct injection high-resolution FT-ICR MS data sets after molecular formula assignment has been performed. When compared to other available FT-ICR MS software, MetaboDirect is superior in that it requires a single line of code to launch a fully automated framework for the generation and visualization of a wide range of plots, with minimal coding experience required. Among the tools evaluated, MetaboDirect is also uniquely able to automatically generate biochemical transformation networks (ab initio) based on mass differences (mass difference network-based approach) that provide an experimental assessment of metabolite connections within a given sample or a complex metabolic system, thereby providing important information about the nature of the samples and the set of microbial reactions or pathways that gave rise to them. Finally, for more experienced users, MetaboDirect allows users to customize plots, outputs, and analyses. CONCLUSION: Application of MetaboDirect to FT-ICR MS-based metabolomic data sets from a marine phage-bacterial infection experiment and a Sphagnum leachate microbiome incubation experiment showcase the exploration capabilities of the pipeline that will enable the research community to evaluate and interpret their data in greater depth and in less time. It will further advance our knowledge of how microbial communities influence and are influenced by the chemical makeup of the surrounding system. The source code and User's guide of MetaboDirect are freely available through ( https://github.com/Coayala/MetaboDirect ) and ( https://metabodirect.readthedocs.io/en/latest/ ), respectively. Video Abstract.


Asunto(s)
Ecosistema , Metabolómica , Espectrometría de Masas/métodos , Metabolómica/métodos , Programas Informáticos , Suelo
13.
Environ Microbiol ; 14(9): 2526-37, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22713159

RESUMEN

Metagenomics generates and tests hypotheses about dynamics and mechanistic drivers in wild populations, yet commonly suffers from insufficient (< 1 ng) starting genomic material for sequencing. Current solutions for amplifying sufficient DNA for metagenomics analyses include linear amplification for deep sequencing (LADS), which requires more DNA than is normally available, linker-amplified shotgun libraries (LASLs), which is prohibitively low throughput, and whole-genome amplification, which is significantly biased and thus non-quantitative. Here, we adapt the LASL approach to next generation sequencing by offering an alternate polymerase for challenging samples, developing a more efficient sizing step, integrating a 'reconditioning PCR' step to increase yield and minimize late-cycle PCR artefacts, and empirically documenting the quantitative capability of the optimized method with both laboratory isolate and wild community viral DNA. Our optimized linker amplification method requires as little as 1 pg of DNA and is the most precise and accurate available, with G + C content amplification biases less than 1.5-fold, even for complex samples as diverse as a wild virus community. While optimized here for 454 sequencing, this linker amplification method can be used to prepare metagenomics libraries for sequencing with next-generation platforms, including Illumina and Ion Torrent, the first of which we tested and present data for here.


Asunto(s)
Virus ADN/genética , Microbiología Ambiental , Metagenómica/métodos , Técnicas de Amplificación de Ácido Nucleico/normas , Composición de Base , Virus ADN/clasificación , Sensibilidad y Especificidad
14.
Nucleic Acids Res ; 38(Database issue): D391-5, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19858098

RESUMEN

Megx.net is a database and portal that provides integrated access to georeferenced marker genes, environment data and marine genome and metagenome projects for microbial ecological genomics. All data are stored in the Microbial Ecological Genomics DataBase (MegDB), which is subdivided to hold both sequence and habitat data and global environmental data layers. The extended system provides access to several hundreds of genomes and metagenomes from prokaryotes and phages, as well as over a million small and large subunit ribosomal RNA sequences. With the refined Genes Mapserver, all data can be interactively visualized on a world map and statistics describing environmental parameters can be calculated. Sequence entries have been curated to comply with the proposed minimal standards for genomes and metagenomes (MIGS/MIMS) of the Genomic Standards Consortium. Access to data is facilitated by Web Services. The updated megx.net portal offers microbial ecologists greatly enhanced database content, and new features and tools for data analysis, all of which are freely accessible from our webpage http://www.megx.net.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Bases de Datos de Ácidos Nucleicos , Bases de Datos de Proteínas , Animales , Biología Computacional/tendencias , Ecología , Ambiente , Genoma Bacteriano , Geografía , Humanos , Almacenamiento y Recuperación de la Información/métodos , Internet , Océanos y Mares , Estructura Terciaria de Proteína , Programas Informáticos
15.
Water Res ; 218: 118484, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35504157

RESUMEN

Viruses are important drivers of microbial community ecology and evolution, influencing microbial mortality, metabolism, and horizontal gene transfer. However, the effects of viruses remain largely unknown in many environments, including in drinking water systems. Drinking water metagenomic studies have offered a whole community perspective of bacterial impacts on water quality, but have not yet considered the influences of viruses. In this study, we address this gap by mining viral DNA sequences from publicly available drinking water metagenomes from distribution systems in six countries around the world. These datasets provide a snapshot of the taxonomic diversity and metabolic potential of the global drinking water virome; and provide an opportunity to investigate the effects of geography, climate, and drinking water treatment practices on viral diversity. Both environmental conditions and differences in sample processing were found to influence the viral composition. Using free chlorine as the residual disinfectant was associated with clear differences in viral taxonomic diversity and metabolic potential, with significantly fewer viral populations and less even viral community structures than observed in distribution systems without residual disinfectant. Additionally, drinking water viruses carry antibiotic resistance genes (ARGs), as well as genes to survive oxidative stress and nitrogen limitation. Through this study, we have demonstrated that viral communities are diverse across drinking water systems and vary with the use of residual disinfectant. Our findings offer directions for future research to develop a more robust understanding of how virus-bacteria interactions in drinking water distribution systems affect water quality.


Asunto(s)
Desinfectantes , Agua Potable , Virus , Purificación del Agua , Bacterias/genética , Cloro , Desinfectantes/farmacología , Metagenómica , Viroma , Virus/genética
16.
Microbiome ; 10(1): 240, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36567334

RESUMEN

BACKGROUND: Early childhood caries (ECC)-dental caries (cavities) occurring in primary teeth up to age 6 years-is a prevalent childhood oral disease with a microbial etiology. Streptococcus mutans was previously considered a primary cause, but recent research promotes the ecologic hypothesis, in which a dysbiosis in the oral microbial community leads to caries. In this incident, density sampled case-control study of 189 children followed from 2 months to 5 years, we use the salivary bacteriome to (1) prospectively test the ecological hypothesis of ECC in salivary bacteriome communities and (2) identify co-occurring salivary bacterial communities predicting future ECC. RESULTS: Supervised classification of future ECC case status using salivary samples from age 12 months using bacteriome-wide data (AUC-ROC 0.78 95% CI (0.71-0.85)) predicts future ECC status before S. mutans can be detected. Dirichlet multinomial community state typing and co-occurrence network analysis identified similar robust and replicable groups of co-occurring taxa. Mean relative abundance of a Haemophilus parainfluenzae/Neisseria/Fusobacterium periodonticum group was lower in future ECC cases (0.14) than controls (0.23, P value < 0.001) in pre-incident visits, positively correlated with saliva pH (Pearson rho = 0.33, P value < 0.001) and reduced in individuals who had acquired S. mutans by the next study visit (0.13) versus those who did not (0.20, P value < 0.01). In a subset of whole genome shotgun sequenced samples (n = 30), case plaque had higher abundances of antibiotic production and resistance gene orthologs, including a major facilitator superfamily multidrug resistance transporter (MFS DHA2 family PBH value = 1.9 × 10-28), lantibiotic transport system permease protein (PBH value = 6.0 × 10-6) and bacitracin synthase I (PBH value = 5.6 × 10-6). The oxidative phosphorylation KEGG pathway was enriched in case plaque (PBH value = 1.2 × 10-8), while the ABC transporter pathway was depleted (PBH value = 3.6 × 10-3). CONCLUSIONS: Early-life bacterial interactions predisposed children to ECC, supporting a time-dependent interpretation of the ecological hypothesis. Bacterial communities which assemble before 12 months of age can promote or inhibit an ecological succession to S. mutans dominance and cariogenesis. Intragenera competitions and intergenera cooperation between oral taxa may shape the emergence of these communities, providing points for preventive interventions. Video Abstract.


Asunto(s)
Caries Dental , Microbiota , Saliva , Streptococcus mutans , Niño , Preescolar , Humanos , Lactante , Estudios de Casos y Controles , Caries Dental/epidemiología , Caries Dental/microbiología , Proteínas de Transporte de Membrana , Microbiota/genética , Saliva/microbiología , Streptococcus mutans/genética , Streptococcus mutans/aislamiento & purificación
17.
mBio ; 13(4): e0005222, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35726916

RESUMEN

Lake Cadagno, a permanently stratified high-alpine lake with a persistent microbial bloom in its chemocline, has long been considered a model for the low-oxygen, high-sulfide Proterozoic ocean. Although the lake has been studied for over 25 years, the absence of concerted study of the bacteria, phytoplankton, and viruses, together with primary and secondary production, has hindered a comprehensive understanding of its microbial food web. Here, the identities, abundances, and productivity of microbes were evaluated in the context of Lake Cadagno biogeochemistry. Photosynthetic pigments together with 16S rRNA gene phylogenies suggest the prominence of eukaryotic phytoplankton chloroplasts, primarily chlorophytes. Chloroplasts closely related to those of high-alpine-adapted Ankyra judayi persisted with oxygen in the mixolimnion, where photosynthetic efficiency was high, while chloroplasts of Closteriopsis-related chlorophytes peaked in the chemocline and monimolimnion. The anoxygenic phototrophic sulfur bacterium Chromatium dominated the chemocline along with Lentimicrobium, a genus of known fermenters. Secondary production peaked in the chemocline, which suggested that anoxygenic primary producers depended on heterotrophic nutrient remineralization. The virus-to-microbe ratio peaked with phytoplankton abundances in the mixolimnion and were at a minimum where Chromatium abundance was highest, trends that suggest that viruses may play a role in the modulation of primary production. Through the combined analysis of bacterial, eukaryotic, viral, and biogeochemical spatial dynamics, we provide a comprehensive synthesis of the Lake Cadagno microbial loop. This study offers a new ecological perspective on how biological and geochemical connections may have occurred in the chemocline of the Proterozoic ocean, where eukaryotic microbial life is thought to have evolved. IMPORTANCE As a window into the past, this study offers insights into the potential role that microbial guilds may have played in the production and recycling of organic matter in ancient Proterozoic ocean chemoclines. The new observations described here suggest that chloroplasts of eukaryotic algae were persistent in the low-oxygen upper chemocline along with the purple and green sulfur bacteria known to dominate the lower half of the chemocline. This study provides the first insights into Lake Cadagno's viral ecology. High viral abundances suggested that viruses may be essential components of the chemocline, where their activity may result in the release and recycling of organic matter. The integration of diverse geochemical and biological data types provides a framework that lays the foundation to quantitatively resolve the processes performed by the discrete populations that comprise the microbial loop in this early anoxic ocean analogue.


Asunto(s)
Lagos , Fitoplancton , Bacterias/genética , Lagos/microbiología , Océanos y Mares , Oxígeno , ARN Ribosómico 16S/genética
18.
PeerJ ; 9: e11111, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996275

RESUMEN

Viral metagenomes (viromes) are a valuable untargeted tool for studying viral diversity and the central roles viruses play in host disease, ecology, and evolution. Establishing effective methods to concentrate and purify viral genomes prior to sequencing is essential for high quality viromes. Using virus spike-and-recovery experiments, we stepwise compared two common approaches for virus concentration, ultrafiltration and iron chloride flocculation, across diverse matrices: wastewater influent, wastewater secondary effluent, river water, and seawater. Viral DNA was purified by removing cellular DNA via chloroform cell lysis, filtration, and enzymatic degradation of extra-viral DNA. We found that viral genomes were concentrated 1-2 orders of magnitude more with ultrafiltration than iron chloride flocculation for all matrices and resulted in higher quality DNA suitable for amplification-free and long-read sequencing. Given its widespread use and utility as an inexpensive field method for virome sampling, we nonetheless sought to optimize iron flocculation. We found viruses were best concentrated in seawater with five-fold higher iron concentrations than the standard used, inhibition of DNase activity reduced purification effectiveness, and five-fold more iron was needed to flocculate viruses from freshwater than seawater-critical knowledge for those seeking to apply this broadly used method to freshwater virome samples. Overall, our results demonstrated that ultrafiltration and purification performed better than iron chloride flocculation and purification in the tested matrices. Given that the method performance depended on the solids content and salinity of the samples, we suggest spike-and-recovery experiments be applied when concentrating and purifying sample types that diverge from those tested here.

19.
mBio ; 12(1)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531401

RESUMEN

We demonstrate that an assembly-independent and spike-in facilitated metagenomic quantification approach can be used to screen and quantify over 2,000 genes simultaneously, while delivering absolute gene concentrations comparable to those for quantitative PCR (qPCR). DNA extracted from dairy manure slurry, digestate, and compost was spiked with genomic DNA from a marine bacterium and sequenced using the Illumina HiSeq4000. We compared gene copy concentrations, in gene copies per mass of sample, of five antimicrobial resistance genes (ARGs) generated with (i) our quantitative metagenomic approach, (ii) targeted qPCR, and (iii) a hybrid quantification approach involving metagenomics and qPCR-based 16S rRNA gene quantification. Although qPCR achieved lower quantification limits, the metagenomic method avoided biases caused by primer specificity inherent to qPCR-based methods and was able to detect orders of magnitude more genes than is possible with qPCR assays. We used the approach to simultaneously quantify ARGs in the Comprehensive Antimicrobial Resistance Database (CARD). We observed that the total abundance of tetracycline resistance genes was consistent across different stages of manure treatment on three farms, but different samples were dominated by different tetracycline resistance gene families.IMPORTANCE qPCR and metagenomics are central molecular techniques that have offered insights into biological processes for decades, from monitoring spatial and temporal gene dynamics to tracking ARGs or pathogens. Still needed is a tool that can quantify thousands of relevant genes in a sample as gene copies per sample mass or volume. We compare a quantitative metagenomic approach with traditional qPCR approaches in the quantification of ARG targets in dairy manure samples. By leveraging the benefits of nontargeted community genomics, we demonstrate high-throughput absolute gene quantification of all known ARG sequences in environmental samples.


Asunto(s)
Farmacorresistencia Microbiana/genética , Metagenómica , Bases de Datos de Ácidos Nucleicos , Dosificación de Gen , Reacción en Cadena de la Polimerasa , Resistencia a la Tetraciclina/genética
20.
mSphere ; 6(3): e0085120, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34106771

RESUMEN

While it is now appreciated that the millions of tons of plastic pollution travelling through marine systems carry complex communities of microorganisms, it is still unknown to what extent these biofilm communities are specific to the plastic or selected by the surrounding ecosystem. To address this, we characterized and compared the microbial communities of microplastic particles, nonplastic (natural and wax) particles, and the surrounding waters from three marine ecosystems (the Baltic, Sargasso and Mediterranean seas) using high-throughput 16S rRNA gene sequencing. We found that biofilm communities on microplastic and nonplastic particles were highly similar to one another across this broad geographical range. The similar temperature and salinity profiles of the Sargasso and Mediterranean seas, compared to the Baltic Sea, were reflected in the biofilm communities. We identified plastic-specific operational taxonomic units (OTUs) that were not detected on nonplastic particles or in the surrounding waters. Twenty-six of the plastic-specific OTUs were geographically ubiquitous across all sampled locations. These geographically ubiquitous plastic-specific OTUs were mostly low-abundance members of their biofilm communities and often represented uncultured members of marine ecosystems. These results demonstrate the potential for plastics to be a reservoir of rare and understudied microbes, thus warranting further investigations into the dynamics and role of these microbes in marine ecosystems. IMPORTANCE This study represents one of the largest comparisons of biofilms from environmentally sampled plastic and nonplastic particles from aquatic environments. By including particles sampled through three separate campaigns in the Baltic, Sargasso, and Mediterranean seas, we were able to make cross-geographical comparisons and discovered common taxonomical signatures that define the plastic biofilm. For the first time, we identified plastic-specific bacteria that reoccur across marine regions. Our data reveal that plastics have selective properties that repeatedly enrich for similar bacteria regardless of location, potentially shifting aquatic microbial communities in areas with high levels of plastic pollution. Furthermore, we show that bacterial communities on plastic do not appear to be strongly influenced by polymer type, suggesting that other properties, such as the absorption and/or leaching of chemicals from the surface, are likely to be more important in the selection and enrichment of specific microorganisms.


Asunto(s)
Bacterias/genética , Bacterias/aislamiento & purificación , Microbiota , Plásticos , Agua de Mar/microbiología , Bacterias/metabolismo , Biopelículas/crecimiento & desarrollo , Geografía , ARN Ribosómico 16S , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA