Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L111-L123, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084409

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive scarring of the lungs and resulting in deterioration in lung function. Transforming growth factor-ß (TGF-ß) is one of the most established drivers of fibrotic processes. TGF-ß promotes the transformation of tissue fibroblasts to myofibroblasts, a key finding in the pathogenesis of pulmonary fibrosis. We report here that TGF-ß robustly upregulates the expression of the calcium-activated chloride channel anoctamin-1 (ANO1) in human lung fibroblasts (HLFs) at mRNA and protein levels. ANO1 is readily detected in fibrotic areas of IPF lungs in the same area with smooth muscle α-actin (SMA)-positive myofibroblasts. TGF-ß-induced myofibroblast differentiation (determined by the expression of SMA, collagen-1, and fibronectin) is significantly inhibited by a specific ANO1 inhibitor, T16Ainh-A01, or by siRNA-mediated ANO1 knockdown. T16Ainh-A01 and ANO1 siRNA attenuate profibrotic TGF-ß signaling, including activation of RhoA pathway and AKT, without affecting initial Smad2 phosphorylation. Mechanistically, TGF-ß treatment of HLFs results in a significant increase in intracellular chloride levels, which is prevented by T16Ainh-A01 or by ANO1 knockdown. The downstream mechanism involves the chloride-sensing "with-no-lysine (K)" kinase (WNK1). WNK1 siRNA significantly attenuates TGF-ß-induced myofibroblast differentiation and signaling (RhoA pathway and AKT), whereas the WNK1 kinase inhibitor WNK463 is largely ineffective. Together, these data demonstrate that 1) ANO1 is a TGF-ß-inducible chloride channel that contributes to increased intracellular chloride concentration in response to TGF-ß; and 2) ANO1 mediates TGF-ß-induced myofibroblast differentiation and fibrotic signaling in a manner dependent on WNK1 protein but independent of WNK1 kinase activity.NEW & NOTEWORTHY This study describes a novel mechanism of differentiation of human lung fibroblasts (HLFs) to myofibroblasts: the key process in the pathogenesis of pulmonary fibrosis. Transforming growth factor-ß (TGF-ß) drives the expression of calcium-activated chloride channel anoctmin-1 (ANO1) leading to an increase in intracellular levels of chloride. The latter recruits chloride-sensitive with-no-lysine (K) kinase (WNK1) to activate profibrotic RhoA and AKT signaling pathways, possibly through activation of mammalian target of rapamycin complex-2 (mTORC2), altogether promoting myofibroblast differentiation.


Asunto(s)
Fibrosis Pulmonar Idiopática , Miofibroblastos , Humanos , Anoctamina-1/metabolismo , Diferenciación Celular , Cloruros/metabolismo , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Miofibroblastos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factores de Crecimiento Transformadores/metabolismo , Factores de Crecimiento Transformadores/farmacología
2.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835342

RESUMEN

After exposure to an antigen, CD8 T cells reach a decision point about their fate: to become either short-lived effector cells (SLECs) or memory progenitor effector cells (MPECs). SLECs are specialized in providing an immediate effector function but have a shorter lifespan and lower proliferative capacity compared to MPECs. Upon encountering the cognate antigen during an infection, CD8 T cells rapidly expand and then contract to a level that is maintained for the memory phase after the peak of the response. Studies have shown that the contraction phase is mediated by TGFß and selectively targets SLECs, while sparing MPECs. The aim of this study is to investigate how the CD8 T cell precursor stage determines TGFß sensitivity. Our results demonstrate that MPECs and SLECs have differential responses to TGFß, with SLECs being more sensitive to TGFß than MPECs. This difference in sensitivity is associated with the levels of TGFßRI and RGS3, and the SLEC-related transcriptional activator T-bet binding to the TGFßRI promoter may provide a molecular basis for increased TGFß sensitivity in SLECs.


Asunto(s)
Linfocitos T CD8-positivos , Memoria Inmunológica , Subgrupos de Linfocitos T , Factor de Crecimiento Transformador beta , Animales , Ratones , Antígenos/metabolismo , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular , Ratones Endogámicos C57BL , Subgrupos de Linfocitos T/inmunología , Factor de Crecimiento Transformador beta/inmunología
3.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36499150

RESUMEN

Several strands of investigation have established that a reduction in the levels of the cellular prion protein (PrPC) is a promising avenue for the treatment of prion diseases. We recently described an indirect approach for reducing PrPC levels that targets Na,K-ATPases (NKAs) with cardiac glycosides (CGs), causing cells to respond with the degradation of these pumps and nearby molecules, including PrPC. Because the therapeutic window of widely used CGs is narrow and their brain bioavailability is low, we set out to identify a CG with improved pharmacological properties for this indication. Starting with the CG known as oleandrin, we combined in silico modeling of CG binding poses within human NKA folds, CG structure-activity relationship (SAR) data, and predicted blood-brain barrier (BBB) penetrance scores to identify CG derivatives with improved characteristics. Focusing on C4'-dehydro-oleandrin as a chemically accessible shortlisted CG derivative, we show that it reaches four times higher levels in the brain than in the heart one day after subcutaneous administration, exhibits promising pharmacological properties, and suppresses steady-state PrPC levels by 84% in immortalized human cells that have been differentiated to acquire neural or astrocytic characteristics. Finally, we validate that the mechanism of action of this approach for reducing cell surface PrPC levels requires C4'-dehydro-oleandrin to engage with its cognate binding pocket within the NKA α subunit. The improved brain bioavailability of C4'-dehydro-oleandrin, combined with its relatively low toxicity, make this compound an attractive lead for brain CG indications and recommends its further exploration for the treatment of prion diseases.


Asunto(s)
Glicósidos Cardíacos , Síndrome de Creutzfeldt-Jakob , Enfermedades por Prión , Priones , Humanos , Proteínas Priónicas/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Glicósidos Cardíacos/uso terapéutico , Priones/metabolismo , Enfermedades por Prión/tratamiento farmacológico , Enfermedades por Prión/metabolismo , Encéfalo/metabolismo
4.
Am J Respir Cell Mol Biol ; 60(2): 221-231, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30230348

RESUMEN

Interstitial lung fibrosis, a frequently idiopathic and fatal disease, has been linked to the increased expression of profibrotic transforming growth factor (TGF)-ßs. P311 is an RNA-binding protein that stimulates TGF-ß1, -ß2, and -ß3 translation in several cell types through its interaction with the eukaryotic translation initiation factor 3b. We report that P311 is switched on in the lungs of patients with idiopathic pulmonary fibrosis (IPF) and in the mouse model of bleomycin (BLM)-induced pulmonary fibrosis. To assess the in vivo role of P311 in lung fibrosis, BLM was instilled into the lungs of P311-knockout mice, in which fibrotic changes were significantly decreased in tandem with a reduction in TGF-ß1, -ß2, and -ß3 concentration/activity compared with BLM-treated wild-type mice. Complementing these findings, forced P311 expression increased TGF-ß concentration/activity in mouse and human lung fibroblasts, thereby leading to an activated phenotype with increased collagen production, as seen in IPF. Consistent with a specific effect of P311 on TGF-ß translation, TGF-ß1-, -ß2-, and -ß3-neutralizing antibodies downregulated P311-induced collagen production by lung fibroblasts. Furthermore, treatment of BLM-exposed P311 knockouts with recombinant TGF-ß1, -ß2, and -ß3 induced pulmonary fibrosis to a degree similar to that found in BLM-treated wild-type mice. These studies demonstrate the essential function of P311 in TGF-ß-mediated lung fibrosis. Targeting P311 could prove efficacious in ameliorating the severity of IPF while circumventing the development of autoimmune complications and toxicities associated with the use of global TGF-ß inhibitors.


Asunto(s)
Fibroblastos/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Oncogénicas/metabolismo , Fibrosis Pulmonar/patología , Animales , Bleomicina , Estudios de Casos y Controles , Colágeno/genética , Colágeno/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Biosíntesis de Proteínas , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta3/genética , Factor de Crecimiento Transformador beta3/metabolismo
5.
Am J Respir Cell Mol Biol ; 61(5): 597-606, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30973753

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is characterized by the transforming growth factor (TGF)-ß-dependent differentiation of lung fibroblasts into myofibroblasts, leading to excessive deposition of extracellular matrix proteins, which distort lung architecture and function. Metabolic reprogramming in myofibroblasts is emerging as an important mechanism in the pathogenesis of IPF, and recent evidence suggests that glutamine metabolism is required in myofibroblasts, although the exact role of glutamine in myofibroblasts is unclear. In the present study, we demonstrate that glutamine and its conversion to glutamate by glutaminase are required for TGF-ß-induced collagen protein production in lung fibroblasts. We found that metabolism of glutamate to α-ketoglutarate by glutamate dehydrogenase or the glutamate-pyruvate or glutamate-oxaloacetate transaminases is not required for collagen protein production. Instead, we discovered that the glutamate-consuming enzymes phosphoserine aminotransferase 1 (PSAT1) and aldehyde dehydrogenase 18A1 (ALDH18A1)/Δ1-pyrroline-5-carboxylate synthetase (P5CS) are required for collagen protein production by lung fibroblasts. PSAT1 is required for de novo glycine production, whereas ALDH18A1/P5CS is required for de novo proline production. Consistent with this, we found that TGF-ß treatment increased cellular concentrations of glycine and proline in lung fibroblasts. Our results suggest that glutamine metabolism is required to promote amino acid biosynthesis and not to provide intermediates such as α-ketoglutarate for oxidation in mitochondria. In support of this, we found that inhibition of glutaminolysis has no effect on cellular oxygen consumption and that knockdown of oxoglutarate dehydrogenase has no effect on the ability of fibroblasts to produce collagen protein. Our results suggest that amino acid biosynthesis pathways may represent novel therapeutic targets for treatment of fibrotic diseases, including IPF.


Asunto(s)
Colágeno/metabolismo , Fibroblastos/metabolismo , Glutaminasa/metabolismo , Glutamina/metabolismo , Diferenciación Celular , Células Cultivadas , Humanos , Pulmón/patología , Miofibroblastos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
6.
Respir Res ; 20(1): 168, 2019 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358001

RESUMEN

BACKGROUND: Pulmonary fibrosis is a progressive disease characterized by structural distortion of the lungs. Transforming growth factor-beta (TGF-beta) is a key cytokine implicated in the pathogenesis of pulmonary fibrosis. TGF-beta-induced myofibroblast differentiation characterized by expression of smooth muscle alpha-actin and extracellular matrix proteins is a key process in pathogenesis of fibrotic disease. Tannic acid is a natural polyphenol with diverse applications. In this study, we investigated the effect of tannic acid on myofibroblast differentiation and pulmonary fibrosis in cultured cells and in bleomycin model of the disease. METHODS: Primary cultured human lung fibroblasts (HLF) were used. The relative levels of proteins were determined by Western blotting. HLF contraction was measured by traction microscopy. Bleomycin-induced pulmonary fibrosis in mice was used as the disease model. RESULTS: Tannic acid inhibited TGF-beta-induced expression of collagen-1 and smooth muscle alpha-actin (SMA) as well as force generation by HLF. Tannic acid did not affect initial phosphorylation of Smad2 in response to TGF-beta, but significantly inhibited sustained Smad2 phosphorylation, which we recently described to be critical for TGF-beta-induced myofibroblast differentiation. Accordingly, tannic acid inhibited Smad-dependent gene transcription in response to TGF-beta, as assessed using luciferase reporter for the activity of Smad-binding elements. Finally, in mouse model of bleomycin-induced pulmonary fibrosis, therapeutic application of tannic acid resulted in a significant reduction of lung fibrosis, decrease in collagen-1 content and of Smad2 phosphorylation in the lungs. CONCLUSIONS: This study demonstrates the anti-fibrotic effect of tannic acid in vitro and in vivo through a regulation of sustained Smad2 phosphorylation.


Asunto(s)
Antifibrinolíticos/farmacología , Fibroblastos/efectos de los fármacos , Pulmón/efectos de los fármacos , Receptores de Factores de Crecimiento Transformadores beta/administración & dosificación , Transducción de Señal/efectos de los fármacos , Taninos/farmacología , Animales , Antifibrinolíticos/uso terapéutico , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Pulmón/citología , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/fisiología , Taninos/uso terapéutico
7.
FASEB J ; 32(2): 862-874, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29042451

RESUMEN

GPCRs have diverse signaling capabilities, based on their ability to assume various conformations. Moreover, it is now appreciated that certain ligands can promote distinct receptor conformations and thereby bias signaling toward a specific pathway to differentially affect cell function. The recently deorphanized G protein-coupled receptor OGR1 [ovarian cancer G protein-coupled receptor 1 ( GPR68)] exhibits diverse signaling events when stimulated by reductions in extracellular pH. We recently demonstrated airway smooth muscle cells transduce multiple signaling events, reflecting a diverse capacity to couple to multiple G proteins. Moreover, we recently discovered that the benzodiazepine lorazepam, more commonly recognized as an agonist of the γ-aminobutyric acid A (GABAA) receptor, can function as an allosteric modulator of OGR1 and, similarly, can promote multiple signaling events. In this study, we demonstrated that different benzodiazepines exhibit a range of biases for OGR1, with sulazepam selectively activating the canonical Gs of the G protein signaling pathway, in heterologous expression systems, as well as in several primary cell types. These findings highlight the potential power of biased ligand pharmacology for manipulating receptor signaling qualitatively, to preferentially activate pathways that are therapeutically beneficial.-Pera, T., Deshpande, D. A., Ippolito, M., Wang, B., Gavrila, A., Michael, J. V., Nayak, A. P., Tompkins, E., Farrell, E., Kroeze, W. K., Roth, B. L., Panettieri, R. A. Jr Benovic, J. L., An, S. S., Dulin, N. O., Penn, R. B. Biased signaling of the proton-sensing receptor OGR1 by benzodiazepines.


Asunto(s)
Benzodiazepinas/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/genética , Células HEK293 , Humanos , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo , Receptores Acoplados a Proteínas G/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética
8.
J Pathol ; 246(1): 54-66, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29873400

RESUMEN

Fibroblast growth factor (FGF) signaling has been implicated in the pathogenesis of pulmonary fibrosis. Mice lacking FGF2 have increased mortality and impaired epithelial recovery after bleomycin exposure, supporting a protective or reparative function following lung injury. To determine whether FGF2 overexpression reduces bleomycin-induced injury, we developed an inducible genetic system to express FGF2 in type II pneumocytes. Double-transgenic (DTG) mice with doxycycline-inducible overexpression of human FGF2 (SPC-rtTA;TRE-hFGF2) or single-transgenic controls were administered intratracheal bleomycin and fed doxycycline chow, starting at either day 0 or day 7. In addition, wild-type mice received intratracheal or intravenous recombinant FGF2, starting at the time of bleomycin treatment. Compared to controls, doxycycline-induced DTG mice had decreased pulmonary fibrosis 21 days after bleomycin, as assessed by gene expression and histology. This beneficial effect was seen when FGF2 overexpression was induced at day 0 or day 7 after bleomycin. FGF2 overexpression did not alter epithelial gene expression, bronchoalveolar lavage cellularity or total protein. In vitro studies using primary mouse and human lung fibroblasts showed that FGF2 strongly inhibited baseline and TGFß1-induced expression of alpha smooth muscle actin (αSMA), collagen, and connective tissue growth factor. While FGF2 did not suppress phosphorylation of Smad2 or Smad-dependent gene expression, FGF2 inhibited TGFß1-induced stress fiber formation and serum response factor-dependent gene expression. FGF2 inhibition of stress fiber formation and αSMA requires FGF receptor 1 (FGFR1) and downstream MEK/ERK, but not AKT signaling. In summary, overexpression of FGF2 protects against bleomycin-induced pulmonary fibrosis in vivo and reverses TGFß1-induced collagen and αSMA expression and stress fiber formation in lung fibroblasts in vitro, without affecting either inflammation or epithelial gene expression. Our results suggest that in the lung, FGF2 is antifibrotic in part through decreased collagen expression and fibroblast to myofibroblast differentiation. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Bleomicina , Diferenciación Celular , Colágeno/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Pulmón/metabolismo , Miofibroblastos/metabolismo , Fibrosis Pulmonar/prevención & control , Actinas/metabolismo , Células Epiteliales Alveolares/patología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factor 2 de Crecimiento de Fibroblastos/genética , Humanos , Pulmón/patología , Ratones Transgénicos , Miofibroblastos/patología , Fenotipo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Fibras de Estrés/metabolismo , Fibras de Estrés/patología , Factores de Tiempo
9.
Curr Top Membr ; 83: 15-43, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31196603

RESUMEN

Myofibroblast differentiation is a critical process in the pathogenesis of tissue fibrosis. We focus our mini-review on recent data showing an implication of monovalent ion transporters in fibroblast to myofibroblast transformation of human lung fibroblasts (HLF). In cultured HLF, cardiotonic steroids (CTS) known as potent inhibitors of Na+,K+-ATPase suppress myofibroblast differentiation in parallel with up- and down-regulated expression of cyclooxygenase-2 (COX-2) and TGF-ß receptor subunit TGFBR2, respectively. K+-free medium mimics antifibrotic action of CTS indicating a key role of elevated intracellular [Na+]i/[K+]i ratio. Augmented expression of COX-2 is abolished by inhibition of Na+/Ca2+ exchanger. Side-by-side with CTS acting via elevation of the [Na+]i/[K+]i ratio fibroblast to myofibroblast transformation is also suppressed by potent inhibitors of Ca2+-activated chloride channels tannic acid and K+,Cl- cotransporter DIOA. The relative impact of [Formula: see text] -mediated and -independent signaling triggered by elevated [Na+]i/[K+]i ratio and altered intracellular anion handling in transcriptomic changes involved in myofibroblast differentiation should be examined further.


Asunto(s)
Pulmón/citología , Proteínas de Transporte de Membrana/metabolismo , Miofibroblastos/citología , Miofibroblastos/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Humanos , Transporte Iónico/efectos de los fármacos , Miofibroblastos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
10.
Am J Respir Cell Mol Biol ; 58(5): 585-593, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29019702

RESUMEN

Organ fibrosis, including idiopathic pulmonary fibrosis, is associated with significant morbidity and mortality. Because currently available therapies have limited effect, there is a need to better understand the mechanisms by which organ fibrosis occurs. We have recently reported that transforming growth factor (TGF)-ß, a key cytokine that promotes fibrogenesis, induces the expression of the enzymes of the de novo serine and glycine synthesis pathway in human lung fibroblasts, and that phosphoglycerate dehydrogenase (PHGDH; the first and rate-limiting enzyme of the pathway) is required to promote collagen protein synthesis downstream of TGF-ß. In this study, we investigated whether inhibition of de novo serine and glycine synthesis attenuates lung fibrosis in vivo. We found that TGF-ß induces mRNA and protein expression of PHGDH in murine fibroblasts. Similarly, intratracheal administration of bleomycin resulted in increased expression of PHGDH in mouse lungs, localized to fibrotic regions. Using a newly developed small molecule inhibitor of PHGDH (NCT-503), we tested whether pharmacologic inhibition of PHGDH could inhibit fibrogenesis both in vitro and in vivo. Treatment of murine and human lung fibroblasts with NCT-503 decreased TGF-ß-induced collagen protein synthesis. Mice treated with the PHGDH inhibitor beginning 7 days after intratracheal instillation of bleomycin had attenuation of lung fibrosis. These results indicate that the de novo serine and glycine synthesis pathway is necessary for TGF-ß-induced collagen synthesis and bleomycin-induced pulmonary fibrosis. PHGDH and other enzymes in the de novo serine and glycine synthesis pathway may be a therapeutic target for treatment of fibrotic diseases, including idiopathic pulmonary fibrosis.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Bleomicina , Inhibidores Enzimáticos/farmacología , Fibroblastos/efectos de los fármacos , Fibrosis Pulmonar Idiopática/prevención & control , Pulmón/efectos de los fármacos , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Animales , Colágeno/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/enzimología , Fibroblastos/patología , Glicina/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/enzimología , Fibrosis Pulmonar Idiopática/patología , Pulmón/enzimología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Fosfoglicerato-Deshidrogenasa/metabolismo , Serina/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología
11.
J Biol Chem ; 291(53): 27239-27251, 2016 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-27836973

RESUMEN

TGF-ß promotes excessive collagen deposition in fibrotic diseases such as idiopathic pulmonary fibrosis (IPF). The amino acid composition of collagen is unique due to its high (33%) glycine content. Here, we report that TGF-ß induces expression of glycolytic genes and increases glycolytic flux. TGF-ß also induces the expression of the enzymes of the de novo serine synthesis pathway (phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH)) and de novo glycine synthesis (serine hydroxymethyltransferase 2 (SHMT2)). Studies in fibroblasts with genetic attenuation of PHGDH or SHMT2 and pharmacologic inhibition of PHGDH showed that these enzymes are required for collagen synthesis. Furthermore, metabolic labeling experiments demonstrated carbon from glucose incorporated into collagen. Lungs from humans with IPF demonstrated increased expression of PHGDH and SHMT2. These results indicate that the de novo serine synthesis pathway is necessary for TGF-ß-induced collagen production and suggest that this pathway may be a therapeutic target for treatment of fibrotic diseases including IPF.


Asunto(s)
Colágeno/metabolismo , Fibroblastos/metabolismo , Glicina Hidroximetiltransferasa/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Fosfoglicerato-Deshidrogenasa/metabolismo , Serina/biosíntesis , Factor de Crecimiento Transformador beta/farmacología , Células Cultivadas , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glicina Hidroximetiltransferasa/genética , Glucólisis , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/patología , Pulmón/citología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Fosfoglicerato-Deshidrogenasa/genética
12.
Circ Res ; 117(4): e41-e53, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26034042

RESUMEN

RATIONALE: PhosPhatidic Acid Phosphatase type 2B (PPAP2B), an integral membrane protein known as lipid phosphate phosphatase (LPP3) that inactivates lysophosphatidic acid, was implicated in coronary artery disease (CAD) by genome-wide association studies. However, it is unclear whether genome-wide association studies-identified coronary artery disease genes, including PPAP2B, participate in mechanotransduction mechanisms by which vascular endothelia respond to local atherorelevant hemodynamics that contribute to the regional nature of atherosclerosis. OBJECTIVE: To establish the critical role of PPAP2B in endothelial responses to hemodynamics. METHODS AND RESULTS: Reduced PPAP2B was detected in vivo in mouse and swine aortic arch (AA) endothelia exposed to chronic disturbed flow, and in mouse carotid artery endothelia subjected to surgically induced acute disturbed flow. In humans, PPAP2B was reduced in the downstream part of carotid plaques where low shear stress prevails. In culture, reduced PPAP2B was measured in human aortic endothelial cells under atherosusceptible waveform mimicking flow in human carotid sinus. Flow-sensitive microRNA-92a and transcription factor KLF2 were identified as upstream inhibitor and activator of endothelial PPAP2B, respectively. PPAP2B suppression abrogated atheroprotection of unidirectional flow; inhibition of lysophosphatidic acid receptor 1 restored the flow-dependent, anti-inflammatory phenotype in PPAP2B-deficient cells. PPAP2B inhibition resulted in myosin light-chain phosphorylation and intercellular gaps, which were abolished by lysophosphatidic acid receptor 1/2 inhibition. Expression quantitative trait locus mapping demonstrated PPAP2B coronary artery disease risk allele is not linked to PPAP2B expression in various human tissues but significantly associated with reduced PPAP2B in human aortic endothelial cells. CONCLUSIONS: Atherorelevant flows dynamically modulate endothelial PPAP2B expression through miR-92a and KLF2. Mechanosensitive PPAP2B plays a critical role in promoting anti-inflammatory phenotype and maintaining vascular integrity of endothelial monolayer under atheroprotective flow.


Asunto(s)
Aorta Torácica/enzimología , Aterosclerosis/enzimología , Células Endoteliales/enzimología , Hemodinámica , Mecanotransducción Celular , Fosfatidato Fosfatasa/metabolismo , Regiones no Traducidas 3' , Animales , Aorta Torácica/fisiopatología , Aterosclerosis/genética , Aterosclerosis/fisiopatología , Aterosclerosis/prevención & control , Sitios de Unión , Células Cultivadas , Regulación Enzimológica de la Expresión Génica , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , MicroARNs/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Fenotipo , Fosfatidato Fosfatasa/genética , Fosforilación , Interferencia de ARN , Receptores del Ácido Lisofosfatídico/metabolismo , Flujo Sanguíneo Regional , Estrés Mecánico , Porcinos , Factores de Tiempo , Transfección
13.
Am J Physiol Lung Cell Mol Physiol ; 310(9): L815-23, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26851261

RESUMEN

Myofibroblast differentiation is a key process in pathogenesis of fibrotic diseases. Cardiac glycosides (ouabain, digoxin) inhibit Na(+)-K(+)-ATPase, resulting in increased intracellular [Na(+)]-to-[K(+)] ratio in cells. Microarray analysis suggested that increased intracellular [Na(+)]/[K(+)] ratio may promote the expression of cyclooxygenase-2 (COX-2), a critical enzyme in the synthesis of prostaglandins. Given antifibrotic effects of prostaglandins through activation of protein kinase A (PKA), we examined if cardiac glycosides stimulate COX-2 expression in human lung fibroblasts and how they affect myofibroblast differentiation. Ouabain stimulated a profound COX-2 expression and a sustained PKA activation, which was blocked by COX-2 inhibitor or by COX-2 knockdown. Ouabain-induced COX-2 expression and PKA activation were abolished by the inhibitor of the Na(+)/Ca(2+) exchanger, KB-R4943. Ouabain inhibited transforming growth factor-ß (TGF-ß)-induced Rho activation, stress fiber formation, serum response factor activation, and the expression of smooth muscle α-actin, collagen-1, and fibronectin. These effects were recapitulated by an increase in intracellular [Na(+)]/[K(+)] ratio through the treatment of cells with K(+)-free medium or with digoxin. Although inhibition of COX-2 or of the Na(+)/Ca(2+) exchanger blocked ouabain-induced PKA activation, this failed to reverse the inhibition of TGF-ß-induced Rho activation or myofibroblast differentiation by ouabain. Together, these data demonstrate that ouabain, through the increase in intracellular [Na(+)]/[K(+)] ratio, drives the induction of COX-2 expression and PKA activation, which is accompanied by a decreased Rho activation and myofibroblast differentiation in response to TGF-ß. However, COX-2 expression and PKA activation are not sufficient for inhibition of the fibrotic effects of TGF-ß by ouabain, suggesting that additional mechanisms must exist.


Asunto(s)
Glicósidos Cardíacos/farmacología , Diferenciación Celular , Digoxina/farmacología , Miofibroblastos/fisiología , Ouabaína/farmacología , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Activación Enzimática , Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Miofibroblastos/efectos de los fármacos
14.
J Biol Chem ; 289(11): 7505-13, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24492608

RESUMEN

Myofibroblast differentiation is a key process in the pathogenesis of fibrotic disease. We have shown previously that differentiation of myofibroblasts is regulated by microtubule polymerization state. In this work, we examined the potential antifibrotic effects of the antitussive drug, noscapine, recently found to bind microtubules and affect microtubule dynamics. Noscapine inhibited TGF-ß-induced differentiation of cultured human lung fibroblasts (HLFs). Therapeutic noscapine treatment resulted in a significant attenuation of pulmonary fibrosis in the bleomycin model of the disease. Noscapine did not affect gross microtubule content in HLFs, but inhibited TGF-ß-induced stress fiber formation and activation of serum response factor without affecting Smad signaling. Furthermore, noscapine stimulated a rapid and profound activation of protein kinase A (PKA), which mediated the antifibrotic effect of noscapine in HLFs, as assessed with the PKA inhibitor, PKI. In contrast, noscapine did not activate PKA in human bronchial or alveolar epithelial cells. Finally, activation of PKA and the antifibrotic effect of noscapine in HLFs were blocked by the EP2 prostaglandin E2 receptor antagonist, PF-04418948, but not by the antagonists of EP4, prostaglandin D2, or prostacyclin receptors. Together, we demonstrate for the first time the antifibrotic effect of noscapine in vitro and in vivo, and we describe a novel mechanism of noscapine action through EP2 prostaglandin E2 receptor-mediated activation of PKA in pulmonary fibroblasts.


Asunto(s)
Antitusígenos/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Noscapina/farmacología , Fibrosis Pulmonar/tratamiento farmacológico , Receptores de Prostaglandina E/metabolismo , Animales , Antineoplásicos/farmacología , Bleomicina/farmacología , Línea Celular Tumoral , ADN/metabolismo , Fibroblastos/metabolismo , Fibrosis , Regulación de la Expresión Génica , Humanos , Hidroxiprolina/química , Luciferasas/metabolismo , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Miofibroblastos/citología , Neoplasias/metabolismo , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología
15.
Apoptosis ; 20(9): 1200-10, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26067145

RESUMEN

In rodents, ubiquitous α1-Na(+), K(+)-ATPase is inhibited by ouabain and other cardiotonic steroids (CTS) at ~10(3)-fold higher concentrations than those effective in other mammals. To examine the specific roles of the CTS-sensitive α1S- and CTS-resistant α1R-Na(+), K(+)-ATPase isoforms, we compared the effects of ouabain on intracellular Na(+) and K(+) content, cell survival, and mitogen-activated protein kinases (MAPK) in human and rat vascular smooth muscle cells (HASMC and RASMC), human and rat endothelial cells (HUVEC and RAEC), and human and rat brain astrocytes. 6-h exposure of HASMC and HUVEC to 3 µM ouabain dramatically increased the intracellular [Na(+)]/[K(+)] ratio to the same extend as in RASMC and RAEC treated with 3000 µM ouabain. In 24, 3 µM ouabain triggered the death of all types of human cells used in this study. Unlike human cells, we did not detect any effect of 3000-5000 µM ouabain on the survival of rat cells, or smooth muscle cells from mouse aorta (MASMC). Unlike in the wild-type α1(R/R) mouse, ouabain triggered death of MASMC from α1(S/S) mouse expressing human α1-Na(+), K(+)-ATPase. Furthermore, transfection of HUVEC with rat α1R-Na(+), K(+)-ATPase protected them from the ouabain-induced death. In HUVEC, ouabain led to phosphorylation of p38 MAPK, whereas in RAEC it stimulated phosphorylation of ERK1/2. Overall, our results, demonstrate that the drastic differences in cytotoxic action of ouabain on human and rodent cells are caused by unique features of α1S/α1R-Na(+), K(+)-ATPase, rather than by any downstream CTS-sensitive/resistant components of the cell death machinery.


Asunto(s)
Cardiotónicos/toxicidad , Muerte Celular/efectos de los fármacos , Ouabaína/toxicidad , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/metabolismo , Biomarcadores/metabolismo , Encéfalo/citología , Línea Celular , Células Epiteliales/metabolismo , Humanos , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Músculo Liso/citología , Potasio/metabolismo , Estructura Terciaria de Proteína , Ratas Sprague-Dawley , Sodio/metabolismo
16.
Respir Res ; 16: 45, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25885656

RESUMEN

BACKGROUND: Fibrosing disorders of the lung, such as idiopathic pulmonary fibrosis, are characterized by progressive extracellular matrix accumulation that is driven by myofibroblasts. The transcription factor megakaryoblastic leukemia-1 (MKL1) mediates myofibroblast differentiation in response to several profibrotic stimuli, but the role it plays in mediating pulmonary fibrosis has not been fully elucidated. In this study, we utilized mice that had a germline deletion of MKL1 (MKL1 (-,-)) to determine the role that MKL1 plays in the development of bleomycin-induced pulmonary fibrosis. METHODS: Bleomycin or normal saline were intratracheally delivered to 9 to 12 week old female MKL1 (+,+) and MKL1 (-,-) mice. Mice were assessed for weight loss and survival to 28 days. Inflammatory responses were assessed through bronchoalveolar lavage at days 3 and 7 post-treatment. The development of pulmonary fibrosis was characterized using hydroxyproline assay and histological staining. MKL1 (+,+) and MKL1 (-,-) mouse lung fibroblasts were isolated to compare morphologic, gene expression and functional differences. RESULTS: MKL1 (-,-) mice demonstrated increased survival, attenuated weight loss, and decreased collagen accumulation compared to wild-type animals 28-days after intratracheal instillation of bleomycin. Histological analysis demonstrated decreased trichrome, smooth muscle α-actin, and fibronectin staining in MKL1(-,-) mice compared to MKL1 (+,+) controls. Differential cell counts from bronchoalveolar lavage demonstrated that there was attenuated neutrophilia 3 days after bleomycin administration, but no difference at day 7. Isolated mouse lung fibroblasts from MKL1 (-,-) mice had decreased contractility and deposited less fibronectin matrix compared to wild-type controls, suggesting a defect in key remodeling functions. CONCLUSIONS: Altogether, these data demonstrate that MKL1 plays a significant role in mediating the fibrotic response to bleomycin injury. Loss of MKL1 attenuated early neutrophil influx, as well as myofibroblast-mediated remodeling. Targeting MKL1 activity may therefore be a useful strategy in treating pulmonary fibrosis.


Asunto(s)
Bleomicina , Fibroblastos/metabolismo , Pulmón/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Transactivadores/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/química , Forma de la Célula , Células Cultivadas , Colágeno/metabolismo , Femenino , Fibroblastos/patología , Fibronectinas/metabolismo , Genotipo , Mutación de Línea Germinal , Mediadores de Inflamación/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila , Fenotipo , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/prevención & control , Transducción de Señal , Factores de Tiempo , Transactivadores/deficiencia , Transactivadores/genética
18.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38854083

RESUMEN

Myofibroblast differentiation, characterized by accumulation of cytoskeletal and extracellular matrix proteins by fibroblasts, is a key process in wound healing and pathogenesis of tissue fibrosis. Transforming growth factor-ß (TGF-ß) is the most powerful known driver of myofibroblast differentiation. TGF-ß signals through transmembrane receptor serine/threonine kinases that phosphorylate Smad transcription factors (Smad2/3) leading to activation of transcription of target genes. Heterotrimeric G proteins mediate a distinct signaling from seven-transmembrane G protein coupled receptors, not commonly linked to Smad activation. We asked if G protein signaling plays any role in TGF-ß-induced myofibroblast differentiation, using primary cultured human lung fibroblasts. Activation of Gαs by cholera toxin blocked TGF-ß-induced myofibroblast differentiation without affecting Smad2/3 phosphorylation. Inhibition of Gαi by pertussis toxin, or siRNA-mediated combined knockdown of Gαq and Gα11 had no significant effect on TGF-ß-induced myofibroblast differentiation. A combined knockdown of Gα12 and Gα13 resulted in a drastic inhibition of TGF-ß-stimulated expression of myofibroblast marker proteins (collagen-1, fibronectin, smooth-muscle α-actin), with siGα12 being significantly more potent than siGα13. Mechanistically, a combined knockdown of Gα12 and Gα13 resulted in a substantially reduced phosphorylation of Smad2 and Smad3 in response to TGF-ß, which was accompanied by a significant decrease in the expression of TGFß receptors (TGFBR1, TGFBR2) and of Smad3 under siGα12/13 conditions. In conclusion, our study uncovers a novel role of Gα12/13 proteins in the control of TGF-ß signaling and myofibroblast differentiation.

19.
Am J Physiol Lung Cell Mol Physiol ; 304(11): L757-64, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23585227

RESUMEN

Myofibroblast differentiation induced by transforming growth factor-ß (TGF-ß) is characterized by the expression of smooth muscle α-actin (SMA) and extracellular matrix proteins. We and others have previously shown that these changes are regulated by protein kinase A (PKA). Adrenomedullin (ADM) is a vasodilator peptide that activates cAMP/PKA signaling through the calcitonin-receptor-like receptor (CRLR) and receptor-activity-modifying proteins (RAMP). In this study, we found that recombinant ADM had little effect on cAMP/PKA in quiescent human pulmonary fibroblasts, whereas it induced a profound activation of cAMP/PKA signaling in differentiated (by TGF-ß) myofibroblasts. In contrast, the prostacyclin agonist iloprost was equally effective at activating PKA in both quiescent fibroblasts and differentiated myofibroblasts. TGF-ß stimulated a profound expression of CRLR with a time course that mirrored the increased PKA responses to ADM. The TGF-ß receptor kinase inhibitor SB431542 abolished expression of CRLR and attenuated the PKA responses of cells to ADM but not to iloprost. CRLR expression was also dramatically increased in lungs from bleomycin-treated mice. Functionally, ADM did not affect initial differentiation of quiescent fibroblasts in response to TGF-ß but significantly attenuated the expression of SMA, collagen-1, and fibronectin in pre-differentiated myofibroblasts, which was accompanied by decreased contractility of myofibroblasts. Finally, sensitization of ADM signaling by transgenic overexpression of RAMP2 in myofibroblasts resulted in enhanced survival and reduced pulmonary fibrosis in the bleomycin model of the disease. In conclusion, differentiated pulmonary myofibroblasts gain responsiveness to ADM via increased CRLR expression, suggesting the possibility of using ADM for targeting pathological myofibroblasts without affecting normal fibroblasts.


Asunto(s)
Adrenomedulina/farmacología , Diferenciación Celular/efectos de los fármacos , Miofibroblastos/citología , Fibrosis Pulmonar/fisiopatología , Actinas/metabolismo , Adrenomedulina/uso terapéutico , Animales , Bleomicina , Proteína Similar al Receptor de Calcitonina/biosíntesis , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Iloprost/farmacología , Ratones , Miofibroblastos/efectos de los fármacos , Miofibroblastos/fisiología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Proteína 2 Modificadora de la Actividad de Receptores/genética , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología
20.
Am J Physiol Lung Cell Mol Physiol ; 305(10): L693-701, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24077945

RESUMEN

T cell migration toward sites of antigen exposure is mediated by G protein signaling and is a key function in the development of immune responses. Regulators of G protein signaling (RGS) proteins modulate G protein signaling; however, their role in the regulation of adaptive immune responses has not been thoroughly explored. Herein we demonstrated abundant expression of the Gi/Gq-specific RGS3 in activated T cells, and that diminished RGS3 expression in a T cell thymoma increased cytokine-induced migration. To examine the role of endogenous RGS3 in vivo, mice deficient in the RGS domain (RGS3(ΔRGS)) were generated and tested in an experimental model of asthma. Compared with littermate controls, the inflammation in the RGS3(ΔRGS) mice was characterized by increased T cell numbers and the striking development of perivascular lymphoid structures. Surprisingly, while innate inflammatory cells were also increased in the lungs of RGS3(ΔRGS) mice, eosinophil numbers and Th2 cytokine production were equivalent to control mice. In contrast, T cell numbers in the draining lymph nodes (dLN) were reduced in the RGS3(ΔRGS), demonstrating a redistribution of T cells from the dLN to the lungs via increased RGS3(ΔRGS) T cell migration. Together these novel findings show a nonredundant role for endogenous RGS3 in controlling T cell migration in vitro and in an in vivo model of inflammation.


Asunto(s)
Movimiento Celular , Inflamación/etiología , Proteínas RGS/fisiología , Mucosa Respiratoria/inmunología , Linfocitos T/inmunología , Células Th2/inmunología , Animales , Apoptosis , Western Blotting , Diferenciación Celular , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pyroglyphidae/patogenicidad , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Linfocitos T/metabolismo , Linfocitos T/patología , Células Th2/metabolismo , Células Th2/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA