Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Immunity ; 49(6): 1103-1115.e6, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566883

RESUMEN

Retinoic acid (RA), a vitamin A metabolite, regulates transcriptional programs that drive protective or pathogenic immune responses in the intestine, in a manner dependent on RA concentration. Vitamin A is obtained from diet and is metabolized by intestinal epithelial cells (IECs), which operate in intimate association with microbes and immune cells. Here we found that commensal bacteria belonging to class Clostridia modulate RA concentration in the gut by suppressing the expression of retinol dehydrogenase 7 (Rdh7) in IECs. Rdh7 expression and associated RA amounts were lower in the intestinal tissue of conventional mice, as compared to germ-free mice. Deletion of Rdh7 in IECs diminished RA signaling in immune cells, reduced the IL-22-dependent antimicrobial response, and enhanced resistance to colonization by Salmonella Typhimurium. Our findings define a regulatory circuit wherein bacterial regulation of IEC-intrinsic RA synthesis protects microbial communities in the gut from excessive immune activity, achieving a balance that prevents colonization by enteric pathogens.


Asunto(s)
Disbiosis/metabolismo , Células Epiteliales/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/metabolismo , Tretinoina/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Disbiosis/microbiología , Células Epiteliales/microbiología , Interacciones Microbiota-Huesped , Mucosa Intestinal/citología , Mucosa Intestinal/microbiología , Linfocitos/metabolismo , Linfocitos/microbiología , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota/genética , Microbiota/fisiología , ARN Ribosómico 16S/genética , Salmonella typhimurium/genética , Salmonella typhimurium/fisiología , Simbiosis , Interleucina-22
2.
PLoS Pathog ; 16(4): e1008360, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32330185

RESUMEN

Intestinal epithelial cells (IECs) are at the forefront of host-pathogen interactions, coordinating a cascade of immune responses to protect against pathogens. Here we show that IEC-intrinsic vitamin A signaling restricts pathogen invasion early in the infection and subsequently activates immune cells to promote pathogen clearance. Mice blocked for retinoic acid receptor (RAR) signaling selectively in IECs (stopΔIEC) showed higher Salmonella burden in colonic tissues early in the infection that associated with higher luminal and systemic loads of the pathogen at later stages. Higher pathogen burden in stopΔIEC mice correlated with attenuated mucosal interferon gamma (IFNγ) production by underlying immune cells. We found that, at homeostasis, the intestinal epithelium of stopΔIEC mice produced significantly lower amounts of interleukin 18 (IL-18), a potent inducer of IFNγ. Regulation of IL-18 by vitamin A was also observed in a dietary model of vitamin A supplementation. IL-18 reconstitution in stopΔIEC mice restored resistance to Salmonella by promoting epithelial cell shedding to eliminate infected cells and limit pathogen invasion early in infection. Further, IL-18 augmented IFNγ production by underlying immune cells to restrict pathogen burden and systemic spread. Our work uncovers a critical role for vitamin A in coordinating a biphasic immune response to Salmonella infection by regulating IL-18 production by IECs.


Asunto(s)
Microbioma Gastrointestinal , Interleucina-18/metabolismo , Mucosa Intestinal/inmunología , Proteínas Asociadas a Microtúbulos/fisiología , Infecciones por Salmonella/prevención & control , Salmonella typhimurium/inmunología , Vitamina A/metabolismo , Animales , Interacciones Huésped-Patógeno , Interferón gamma/metabolismo , Mucosa Intestinal/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Ácido Retinoico/metabolismo , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/patología , Transducción de Señal
4.
PLoS Pathog ; 12(12): e1006032, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27973535

RESUMEN

Pathogen clearance and host resilience/tolerance to infection are both important factors in surviving an infection. Cells of the myeloid lineage play important roles in both of these processes. Neutrophils, monocytes, macrophages, and dendritic cells all have important roles in initiation of the immune response and clearance of bacterial pathogens. If these cells are not properly regulated they can result in excessive inflammation and immunopathology leading to decreased host resilience. Programmed cell death (PCD) is one possible mechanism that myeloid cells may use to prevent excessive inflammation. Myeloid cell subsets play roles in tissue repair, immune response resolution, and maintenance of homeostasis, so excessive PCD may also influence host resilience in this way. In addition, myeloid cell death is one mechanism used to control pathogen replication and dissemination. Many of these functions for PCD have been well defined in vitro, but the role in vivo is less well understood. We created a mouse that constitutively expresses the pro-survival B-cell lymphoma (bcl)-2 protein in myeloid cells (CD68(bcl2tg), thus decreasing PCD specifically in myeloid cells. Using this mouse model we explored the impact that decreased cell death of these cells has on infection with two different bacterial pathogens, Legionella pneumophila and Streptococcus pyogenes. Both of these pathogens target multiple cell death pathways in myeloid cells, and the expression of bcl2 resulted in decreased PCD after infection. We examined both pathogen clearance and host resilience and found that myeloid cell death was crucial for host resilience. Surprisingly, the decreased myeloid PCD had minimal impact on pathogen clearance. These data indicate that the most important role of PCD during infection with these bacteria is to minimize inflammation and increase host resilience, not to aid in the clearance or prevent the spread of the pathogen.


Asunto(s)
Apoptosis/inmunología , Enfermedad de los Legionarios/inmunología , Células Mieloides/inmunología , Infecciones Estreptocócicas/inmunología , Animales , Citometría de Flujo , Inmunidad Innata , Legionella pneumophila/inmunología , Ratones , Ratones Transgénicos , Streptococcus pyogenes/inmunología
5.
Nat Microbiol ; 7(10): 1673-1685, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36138166

RESUMEN

Colonization of the intestine by oral microbes has been linked to multiple diseases such as inflammatory bowel disease and colon cancer, yet mechanisms allowing expansion in this niche remain largely unknown. Veillonella parvula, an asaccharolytic, anaerobic, oral microbe that derives energy from organic acids, increases in abundance in the intestine of patients with inflammatory bowel disease. Here we show that nitrate, a signature metabolite of inflammation, allows V. parvula to transition from fermentation to anaerobic respiration. Nitrate respiration, through the narGHJI operon, boosted Veillonella growth on organic acids and also modulated its metabolic repertoire, allowing it to use amino acids and peptides as carbon sources. This metabolic shift was accompanied by changes in carbon metabolism and ATP production pathways. Nitrate respiration was fundamental for ectopic colonization in a mouse model of colitis, because a V. parvula narG deletion mutant colonized significantly less than a wild-type strain during inflammation. These results suggest that V. parvula harness conditions present during inflammation to colonize in the intestine.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Veillonella , Adenosina Trifosfato/metabolismo , Aminoácidos/metabolismo , Animales , Carbono/metabolismo , Inflamación , Intestinos , Ratones , Nitratos/metabolismo , Veillonella/genética , Veillonella/metabolismo
6.
Gut Microbes ; 13(1): 1874815, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33567985

RESUMEN

Mucus-associated bacterial communities are critical for determining disease pathology and promoting colonization resistance. Yet the key ecological properties of mucus resident communities remain poorly defined. Using an approach that combines in situ hybridization, laser microdissection and 16s rRNA sequencing of spatially distinct regions of the mouse gut lumen, we discovered that a dense microbial community resembling a biofilm is embedded in the mucus layer. The mucus-associated biofilm-like community excluded bacteria belonging to phylum Proteobacteria. Additionally, it was significantly more diverse and consisted of bacterial species that were unique to it. By employing germ-free mice deficient in T and B lymphocytes we found that formation of biofilm-like structure was independent of adaptive immunity. Instead the integrity of biofilm-like community depended on Gram-positive commensals such as Clostridia. Additionally, biofilm-like community in the mucus lost fewer Clostridia and showed smaller bloom of Proteobacteria compared to the lumen upon antibiotic treatment. When subjected to time-restricted feeding biofilm-like structure significantly enhanced in size and showed enrichment of Clostridia. Taken together our work discloses that mucus-associated biofilm-like community represents a specialized community that is structurally and compositionally distinct that excludes aerobic bacteria while enriching for anaerobic bacteria such as Clostridia, exhibits enhanced stability to antibiotic treatment and that can be modulated by dietary changes.


Asunto(s)
Bacterias/aislamiento & purificación , Microbioma Gastrointestinal , Moco/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Biopelículas , ADN Bacteriano/genética , Ecosistema , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico 16S/genética , Análisis Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA