RESUMEN
OBJECTIVES: A recent study has provided empirical support for the use of remote microphone (RM) systems to improve listening-in-noise performance of autistic youth. It has been proposed that RM system effects might be achieved by boosting engagement in this population. The present study used behavioral coding to test this hypothesis in autistic and nonautistic youth listening in an ecologically valid, noisy environment. DESIGN: We drew on extant data from a recent experimental study in which 56 youth (32 autistic, 24 nonautistic) matched at the group level on age and biological sex completed listening-in-noise tasks wherein they reported their perception of audiovisual syllables, words, sentences, and passages with and without an RM system; conditions were counter-balanced across participants. As previously reported, perceptual accuracy varied with stimulus complexity and overall improved with the RM system, with improvements not significantly different between groups. Video recordings of participants completing listening-in-noise tasks in both conditions were coded via a 5-second, partial-interval coding system by naive coders for (a) engagement in the task (indexed via proportion of intervals in which participants displayed on-task behaviors) and (b) verbal, stimulus-specific protesting in the task (indexed via proportion of intervals in which participants displayed verbal, stimulus-specific protesting behaviors). Examples of on-task behaviors included attending to the screen and completing task activities. Examples of protesting behaviors included complaining about stimuli volume or the inability to hear. Chronological age, autism features, language ability, audiovisual speech integration as measured by psychophysical tasks, tactile responsiveness, and nonverbal intelligence quotient were evaluated as putative predictors and/or moderators of effects on behaviors of interest. RESULTS: In general, participants were highly engaged in the task, and there were few protests, reflecting more than 90% and fewer than 0.5% of coded intervals, respectively. We did not detect any statistically significant effects of group or RM system use on task engagement. Nonautistic youth were engaged in the listening-in-noise task for an average of 97.45% of intervals, whereas autistic youth were engaged in the listening-in-noise task for an average of 94.25% of intervals. In contrast, verbal, stimulus-specific protesting in the listening-in-noise task was significantly reduced, on average, in the RM (0.04% of intervals) versus the No RM (0.2% of intervals) conditions. There were no effects related to group for this behaviorally coded outcome. In addition, select participant characteristics predicted engagement within conditions across participants. Greater language ability and nonverbal intelligence quotient predicted increased engagement when not using an RM system. Increased features of autism and wider temporal binding windows for audiovisual speech predicted reduced engagement while using an RM system, and greater audiovisual integration predicted increased engagement while using an RM system. CONCLUSIONS: The results of this study suggest that RM system use reduces verbal, stimulus-specific protesting, which likely reflects difficulty engaging when listening in noise. The present study extends our previous study to provide additional empirical support for RM system use in autistic and nonautistic youth.
RESUMEN
Purpose/Aim. Autistic individuals may show either hyper- or hypo- responsiveness to touch compared to non-autistic individuals. These behavioural responses depend on perceptual and evaluative mechanisms, which unfold sequentially and thus can be distinguished by exploring the timing of neural responses. In this study, we examined neural response timing to pleasant, unpleasant, and affectively neutral textures, to determine whether these perceptual versus evaluative subprocesses differ in autism and how each subprocess contributes to behavioural responses.Materials and Methods. Our sample included n = 13 autistic and n = 14 non-autistic adults who completed functional magnetic resonance imaging. We analysed early, intermediate, and late phases of the tactile response, derived from studies of noxious tactile stimulation, to three different textures.Results. The autistic group showed distinct differences from the non-autistic group to each of the textures, showing earlier, somatosensory differences in response to the pleasantly and unpleasantly rated textures and later, frontomotor differences in response to the neutrally rated texture. Further, reduced early phase response to the pleasant texture correlated with increased sensory seeking behaviour.Conclusions. While preliminary, these results suggest distinct patterns between autistic and non-autistic individuals in how the neural response to touch unfolds and its correspondence with the perceived pleasantness of tactile experience. The findings suggest perceptual differences in response to affectively charged textures and evaluative differences in response to neutral, ambiguous textures. These temporal properties may inform future studies of tactile processing in autism, lending a better understanding of how individuals differ in their sensory experiences across contexts.
RESUMEN
PURPOSE: This study evaluates the extent to which automated indices of vocal development are stable and valid for predicting language in infants at increased familial likelihood for autism and/or language impairment and relatively lower likelihood infants. METHOD: A group of infants with autistic siblings (Sibs-autism; 20 infants) and a comparison group of infants with non-autistic siblings (Sibs-NA; 20 infants) wore Language ENvironment Analysis (LENA) recording devices for 16 hr on 2 days within a 1-week period. Extant software was used to derive several putative indices of vocal development from these recordings. Stability of these variables was examined across and within groups. Expressive and receptive language aggregates were calculated for each participant. Multiple regression analyses were used to (a) evaluate zero-order correlations for variables derived from LENA recordings with concurrent and future language and (b) test whether those associations were moderated by group status. RESULTS: Both stability and validity differed by variable and group status. All variables reached acceptable stability in the Sibs-autism group within two to three observations, whereas stability of most variables was attenuated in the Sibs-NA group. No variables were associated with concurrent language in the theoretically motivated direction across groups, but two variables were strongly associated with concurrent expressive language in only the Sibs-NA group. Additionally, two variables were associated with later expressive language, though these correlations were again stronger in the Sibs-NA versus Sibs-autism group. CONCLUSIONS: Although selected automated indices of vocal development were stable in Sibs-autism and/or valid for predicting expressive language within Sibs-NA, no scores showed strong, theoretically motivated associations with language within the Sibs-autism group. Automated indices of vocal development may, thus, have limited validity or clinical utility for predicting language development in infants at elevated familial likelihood for autism. SUPPLEMENTAL MATERIAL: https://doi.org/10.23641/asha.24415735.
Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastornos del Desarrollo del Lenguaje , Lactante , Humanos , Hermanos , Trastornos del Desarrollo del Lenguaje/complicaciones , Desarrollo del Lenguaje , Lenguaje , Trastorno del Espectro Autista/complicacionesRESUMEN
Explaining individual differences in vocabulary in autism is critical, as understanding and using words to communicate are key predictors of long-term outcomes for autistic individuals. Differences in audiovisual speech processing may explain variability in vocabulary in autism. The efficiency of audiovisual speech processing can be indexed via amplitude suppression, wherein the amplitude of the event-related potential (ERP) is reduced at the P2 component in response to audiovisual speech compared to auditory-only speech. This study used electroencephalography (EEG) to measure P2 amplitudes in response to auditory-only and audiovisual speech and norm-referenced, standardized assessments to measure vocabulary in 25 autistic and 25 nonautistic children to determine whether amplitude suppression (a) differs or (b) explains variability in vocabulary in autistic and nonautistic children. A series of regression analyses evaluated associations between amplitude suppression and vocabulary scores. Both groups demonstrated P2 amplitude suppression, on average, in response to audiovisual speech relative to auditory-only speech. Between-group differences in mean amplitude suppression were nonsignificant. Individual differences in amplitude suppression were positively associated with expressive vocabulary through receptive vocabulary, as evidenced by a significant indirect effect observed across groups. The results suggest that efficiency of audiovisual speech processing may explain variance in vocabulary in autism.