Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 17(14): 9465-70, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25764990

RESUMEN

Time-resolved infra-red (IR) absorption spectroscopy is used to follow the production of HF from the reaction of fluorine atoms in liquid acetonitrile (CH3CN). Photolysis of dissolved XeF2 using ∼50 fs duration, 267 nm laser pulses generates F atoms and XeF on prompt (sub-ps) timescales, as verified by broadband transient electronic absorption spectroscopy. The fundamental vibrational band of HF in solution spans more than 400 cm(-1) around the band centre at 3300 cm(-1), and analysis of portions of the time-resolved spectra reveals time constants for the rise in HF absorption that become longer to lower wavenumber. The time constants for growth of 40 cm(-1) wide portions of the IR spectra centred at 3420, 3320 and 3240 cm(-1) are, respectively, 3.04 ± 0.26, 5.48 ± 0.24 and 7.47 ± 0.74 ps (1 SD uncertainties). The shift to lower wavenumber with time that causes these changes to the time constants is attributed to evolution of the micro-solvation environment of HF following the chemical reaction. The initial growth of the high-wavenumber portion of the band may contain a contribution from relaxation of initially vibrationally excited HF, for which a time constant of 2.4 ± 0.2 ps is deduced from IR pump and probe spectroscopy of a dilute HF solution in acetonitrile.

2.
Science ; 347(6221): 530-3, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25635095

RESUMEN

Solvent-solute interactions influence the mechanisms of chemical reactions in solution, but the response of the solvent is often slower than the reactive event. Here, we report that exothermic reactions of fluorine (F) atoms in d3-acetonitrile and d2-dichloromethane involve efficient energy flow to vibrational motion of the deuterium fluoride (DF) product that competes with dissipation of the energy to the solvent bath, despite strong solvent coupling. Transient infrared absorption spectroscopy and molecular dynamics simulations show that after DF forms its first hydrogen bond on a subpicosecond time scale, DF vibrational relaxation and further solvent restructuring occur over more than 10 picoseconds. Characteristic dynamics of gas-phase F-atom reactions with hydrogen-containing molecules persist in polar organic solvents, and the spectral evolution of the DF products serves as a probe of solvent reorganization induced by a chemical reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA