Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Ther ; 27(2): 314-325, 2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30554854

RESUMEN

Ovarian cancer presents in 80% of patients as a metastatic disease, which confers it with dismal prognosis despite surgery and chemotherapy. However, it is an immunogenic disease, and the presence of intratumoral T cells is a major prognostic factor for survival. We used a synthetic consensus (SynCon) approach to generate a novel DNA vaccine that breaks immune tolerance to follicle-stimulating hormone receptor (FSHR), present in 50% of ovarian cancers but confined to the ovary in healthy tissues. SynCon FSHR DNA vaccine generated robust CD8+ and CD4+ cellular immune responses and FSHR-redirected antibodies. The SynCon FSHR DNA vaccine delayed the progression of a highly aggressive ovarian cancer model with peritoneal carcinomatosis in immunocompetent mice, and it increased the infiltration of anti-tumor CD8+ T cells in the tumor microenvironment. Anti-tumor activity of this FSHR vaccine was confirmed in a syngeneic murine FSHR-expressing prostate cancer model. Furthermore, adoptive transfer of vaccine-primed CD8+ T cells after ex vivo expansion delayed ovarian cancer progression. In conclusion, the SynCon FSHR vaccine was able to break immune tolerance and elicit an effective anti-tumor response associated with an increase in tumor-infiltrating T cells. FSHR DNA vaccination could help current ovarian cancer therapy after first-line treatment of FSHR+ tumors to prevent tumor recurrence.


Asunto(s)
Vacunas contra el Cáncer/uso terapéutico , Neoplasias Ováricas/prevención & control , Receptores de HFE/inmunología , Vacunas de ADN/uso terapéutico , Animales , Vacunas contra el Cáncer/inmunología , Femenino , Citometría de Flujo , Células HEK293 , Humanos , Immunoblotting , Inmunoterapia/métodos , Ratones , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/terapia , Vacunas de ADN/inmunología
2.
Mol Ther ; 26(2): 435-445, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29249395

RESUMEN

Immune checkpoint blockade antibodies are setting a new standard of care for cancer patients. It is therefore important to assess any new immune-based therapies in the context of immune checkpoint blockade. Here, we evaluate the impact of combining a synthetic consensus TERT DNA vaccine that has improved capacity to break tolerance with immune checkpoint inhibitors. We observed that blockade of CTLA-4 or, to a lesser extent, PD-1 synergized with TERT vaccine, generating more robust anti-tumor activity compared to checkpoint alone or vaccine alone. Despite this anti-tumor synergy, none of these immune checkpoint therapies showed improvement in TERT antigen-specific immune responses in tumor-bearing mice. αCTLA-4 therapy enhanced the frequency of T-bet+/CD44+ effector CD8+ T cells within the tumor and decreased the frequency of regulatory T cells within the tumor, but not in peripheral blood. CTLA-4 blockade synergized more than Treg depletion with TERT DNA vaccine, suggesting that the effect of CTLA-4 blockade is more likely due to the expansion of effector T cells in the tumor rather than a reduction in the frequency of Tregs. These results suggest that immune checkpoint inhibitors function to alter the immune regulatory environment to synergize with DNA vaccines, rather than boosting antigen-specific responses at the site of vaccination.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Vacunas contra el Cáncer/inmunología , Neoplasias/genética , Neoplasias/inmunología , Telomerasa/inmunología , Vacunas de ADN/inmunología , Animales , Biomarcadores de Tumor , Antígeno CTLA-4/antagonistas & inhibidores , Vacunas contra el Cáncer/genética , Línea Celular Tumoral , Terapia Combinada , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoterapia , Ratones , Neoplasias/patología , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Telomerasa/genética , Vacunas de ADN/genética , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Mol Ther ; 25(4): 976-988, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28237837

RESUMEN

Tumor-associated antigens have emerged as important immunotherapeutic targets in the fight against cancer. Germline tumor antigens, such as WT1, Wilms' tumor gene 1, are overexpressed in many human malignancies but have low expression in somatic tissues. Recent vaccination approaches to target WT1 have been hampered by poor in vivo immune potency, likely due to the conserved self-antigen nature of WT1. In this study, we use a novel synthetic micro-consensus SynCon DNA vaccine approach with the goal of breaking tolerance and increasing vaccine immune potency. This approach induced new, neo-antigen-like responses that were superior to those induced by native WT1 DNA immunogens for driving T cell immunity and breaking tolerance. Non-human primates (NHPs) vaccinated with SynCon WT1 antigens elicited immune responses against native rhesus WT1 peptides. When delivered by electroporation (EP) in mice, SynCon-based WT1 constructs elicited strong CD4 and CD8 T cell responses (including IFN-γ, CD107a, and TNF-α) to both native and consensus peptides. In addition, SynCon WT1 vaccine-induced antibodies recognized native WT1 in vitro. Vaccination with the SynCon WT1 immunogens was capable of slowing tumor growth in therapeutic models in vivo. These data support the further study of synthetic consensus DNA vaccines for breaking tolerance to important germline antigens.


Asunto(s)
Antígenos de Neoplasias/inmunología , Tolerancia Inmunológica , Subgrupos Linfocitarios/inmunología , Neoplasias/inmunología , Vacunas de ADN/inmunología , Proteínas WT1/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos/inmunología , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral , Citocinas/metabolismo , Modelos Animales de Enfermedad , Epítopos de Linfocito T/inmunología , Femenino , Expresión Génica , Humanos , Epítopos Inmunodominantes/química , Epítopos Inmunodominantes/inmunología , Subgrupos Linfocitarios/metabolismo , Macaca mulatta , Masculino , Ratones , Neoplasias/mortalidad , Neoplasias/patología , Neoplasias/terapia , Péptidos/inmunología , Vacunación
4.
J Cell Sci ; 128(21): 3997-4013, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26359297

RESUMEN

Integrins play crucial roles in epithelial adhesion, proliferation, wound healing and cancer. In the epidermis, the roles of many integrin subunits are incompletely defined and mechanistic details regarding their functions are lacking. We performed a multiplexed small hairpin (sh)RNA screen to define roles for each subunit in human organotypic skin. We show that integrin-αv (also known as ITGAV) heterodimers are essential for epidermal generation, with integrin-αv loss driving a keratinocyte G1-S cell cycle block. Surprisingly, integrin αv is not localized within keratinocyte focal adhesions, and instead maintains proliferation by controlling cellular (c)-Myc translation through FAK, p38ß and p90RSK1. These phenotypes depend only on the binding partners of integrin-αv--integrin ß5 and integrin ß6 (also known as ITGB5 and ITGB6, respectively). Through inducible depletion of integrin αv in both normal organotypic epidermis and Ras-driven invasive neoplasia, we show that integrin αv is required for de novo tissue generation and neoplastic invasion but that it is dispensable for epidermal maintenance. Heterodimers of integrin αv with integrin ß5 (integrin αvß5) or integrin ß6 (integrin αvß6) are required to similar extents for neoplastic invasion, thus identifying integrin αvß5 and integrin αvß6 heterodimers as potential therapeutic targets for epidermal squamous cell carcinoma.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Integrina alfaV/metabolismo , Integrinas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores de Vitronectina/metabolismo , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Adhesiones Focales/fisiología , Humanos , Inmunoprecipitación , Cadenas beta de Integrinas/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Melanocitos/citología , Melanocitos/metabolismo , Piel/citología , Piel/metabolismo
5.
Cancer Immunol Immunother ; 66(12): 1577-1588, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28819703

RESUMEN

Prostate-specific membrane antigen (PSMA) is expressed at high levels on malignant prostate cells and is likely an important therapeutic target for the treatment of prostate carcinoma. Current immunotherapy approaches to target PSMA include peptide, cell, vector or DNA-based vaccines as well as passive administration of PSMA-specific monoclonal antibodies (mAb). Conventional mAb immunotherapy has numerous logistical and practical limitations, including high production costs and a requirement for frequent dosing due to short mAb serum half-life. In this report, we describe a novel strategy of antibody-based immunotherapy against prostate carcinoma that utilizes synthetic DNA plasmids that encode a therapeutic human mAb that target PSMA. Electroporation-enhanced intramuscular injection of the DNA-encoded mAb (DMAb) plasmid into mice led to the production of functional and durable levels of the anti-PSMA antibody. The anti-PSMA produced in vivo controlled tumor growth and prolonged survival in a mouse model. This is likely mediated by antibody-dependent cellular cytotoxicity (ADCC) effect with the aid of NK cells. Further study of  this novel approach for treatment of human prostate disease and other malignant conditions is warranted.


Asunto(s)
Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , ADN/genética , Inmunoterapia/métodos , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/terapia , Animales , Línea Celular Tumoral , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones Transgénicos , Terapia Molecular Dirigida , Plásmidos/genética , Plásmidos/inmunología , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/inmunología
6.
Oncotarget ; 10(1): 13-16, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30713599

RESUMEN

Checkpoint inhibitors (CPI) have revolutionized the treatment of many solid tumors. However, difficulties in production, stability, the requirement of frequent high doses for antibody administration and long intravenous administration are recurring issues. Synthetically designed DNA-encoded monoclonal antibodies (DMAbs) are a novel delivery method for antibody therapy which could potentially address many of these issues, simplifying design and implementation of MAb-based therapies. DMAbs delivered through plasmid DNA injection and electroporation have been used in preclinical models for the treatment or prophylaxis of infectious diseases, cancer and cardiovascular disease. Our group has recently reported that immune checkpoint blockers can be optimized and delivered in vivo advancing further DMAb technology by optimization, expression and in vivo functional characterization of anti-CTLA4 antibodies. Here we report optimization, expression and binding of DMAbs based on anti-PD1 CPI and discuss the potential of DMAbs in checkpoint immunotherapy.

7.
JCI Insight ; 4(8)2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30996140

RESUMEN

Specific antibody therapy, including mAbs and bispecific T cell engagers (BiTEs), are important new tools for cancer immunotherapy. However, these approaches are slow to develop and may be limited in their production, thus restricting the patients who can access these treatments. BiTEs exhibit a particularly short half-life and difficult production. The development of an approach allowing simplified development, delivery, and in vivo production would be an important advance. Here we describe the development of a designed synthetic DNA plasmid, which we optimized to permit high expression of an anti-HER2 antibody (HER2dMAb) and delivered it into animals through adaptive electroporation. HER2dMAb was efficiently expressed in vitro and in vivo, reaching levels of 50 µg/ml in mouse sera. Mechanistically, HER2dMAb blocked HER2 signaling and induced antibody-dependent cytotoxicity. HER2dMAb delayed tumor progression for HER2-expressing ovarian and breast cancer models. We next used the HER2dMAb single-chain variable fragment portion to engineer a DNA-encoded BiTE (DBiTE). This HER2DBiTE was expressed in vivo for approximately 4 months after a single administration. The HER2DBiTE was highly cytolytic and delayed cancer progression in mice. These studies illustrate an approach to generate DBiTEs in vivo, which represent promising immunotherapies for HER2+ tumors, including ovarian and potentially other cancers.


Asunto(s)
Anticuerpos Biespecíficos/administración & dosificación , Anticuerpos Monoclonales/administración & dosificación , Antineoplásicos Inmunológicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Neoplasias/tratamiento farmacológico , Animales , Anticuerpos Biespecíficos/genética , Anticuerpos Monoclonales/genética , Línea Celular Tumoral , Electroporación/métodos , Femenino , Humanos , Masculino , Ratones , Neoplasias/inmunología , Neoplasias/patología , Plásmidos/administración & dosificación , Plásmidos/genética , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Cancer Immunol Res ; 7(2): 174-182, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30679156

RESUMEN

T-cell recognition of cancer neoantigens is important for effective immune-checkpoint blockade therapy, and an increasing interest exists in developing personalized tumor neoantigen vaccines. Previous studies utilizing RNA and long-peptide neoantigen vaccines in preclinical and early-phase clinical studies have shown immune responses predominantly driven by MHC class II CD4+ T cells. Here, we report on a preclinical study utilizing a DNA vaccine platform to target tumor neoantigens. We showed that optimized strings of tumor neoantigens, when delivered by potent electroporation-mediated DNA delivery, were immunogenic and generated predominantly MHC class I-restricted, CD8+ T-cell responses. High MHC class I affinity was associated specifically with immunogenic CD8+ T-cell epitopes. These DNA neoantigen vaccines induced a therapeutic antitumor response in vivo, and neoantigen-specific T cells expanded from immunized mice directly killed tumor cells ex vivo These data illustrate a unique advantage of this DNA platform to drive CD8+ T-cell immunity for neoantigen immunotherapy.


Asunto(s)
Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/inmunología , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Vacunas de ADN/inmunología , Animales , Linfocitos T CD8-positivos/metabolismo , Vacunas contra el Cáncer/síntesis química , Citotoxicidad Inmunológica , Melanoma Experimental , Ratones , Neoplasias/inmunología , Neoplasias/terapia , Vacunas de ADN/síntesis química , Vacunología/métodos
9.
Oncoimmunology ; 8(1): e1515058, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30546956

RESUMEN

Ovarian cancer is frequently diagnosed as peritoneal carcinomatosis. Unlike other tumor locations, the peritoneal cavity is commonly exposed to gut-breaching and ascending genital microorganisms and has a unique immune environment. IL-33 is a local cytokine that can activate innate and adaptive immunity. We studied the effectiveness of local IL-33 delivery in the treatment of cancer that has metastasized to the peritoneal cavity. Direct peritoneal administration of IL-33 delayed the progression of metastatic peritoneal cancer. Prolongation in survival was not associated with a direct effect of IL-33 on tumor cells, but with major changes in the immune microenvironment of the tumor. IL-33 promoted a significant increase in the leukocyte compartment of the tumor immunoenvironment and an allergic cytokine profile. We observed a substantial increase in the number of activated CD4+ T-cells accompanied by peritoneal eosinophil infiltration, B-cell activation and activation of peritoneal macrophages which displayed tumoricidal capacity. Depletion of CD4+ cells, eosinophils or macrophages reduced the anti-tumor effects of IL-33 but none of these alone were sufficient to completely abrogate its positive benefit. In conclusion, local administration of IL-33 generates an allergic tumor environment resulting in a novel approach for treatment of metastatic peritoneal malignancies, such as advanced ovarian cancer.

10.
Lancet Infect Dis ; 19(9): 1013-1022, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31351922

RESUMEN

BACKGROUND: Middle East respiratory syndrome (MERS) coronavirus causes a highly fatal lower-respiratory tract infection. There are as yet no licensed MERS vaccines or therapeutics. This study (WRAIR-2274) assessed the safety, tolerability, and immunogenicity of the GLS-5300 MERS coronavirus DNA vaccine in healthy adults. METHODS: This study was a phase 1, open-label, single-arm, dose-escalation study of GLS-5300 done at the Walter Reed Army Institute for Research Clinical Trials Center (Silver Spring, MD, USA). We enrolled healthy adults aged 18-50 years; exclusion criteria included previous infection or treatment of MERS. Eligible participants were enrolled sequentially using a dose-escalation protocol to receive 0·67 mg, 2 mg, or 6 mg GLS-5300 administered by trained clinical site staff via a single intramuscular 1 mL injection at each vaccination at baseline, week 4, and week 12 followed immediately by co-localised intramuscular electroporation. Enrolment into the higher dose groups occurred after a safety monitoring committee reviewed the data following vaccination of the first five participants at the previous lower dose in each group. The primary outcome of the study was safety, assessed in all participants who received at least one study treatment and for whom post-dose study data were available, during the vaccination period with follow-up through to 48 weeks after dose 3. Safety was measured by the incidence of adverse events; administration site reactions and pain; and changes in safety laboratory parameters. The secondary outcome was immunogenicity. This trial is registered at ClinicalTrials.gov (number NCT02670187) and is completed. FINDINGS: Between Feb 17 and July 22, 2016, we enrolled 75 individuals and allocated 25 each to 0·67 mg, 2 mg, or 6 mg GLS-5300. No vaccine-associated serious adverse events were reported. The most common adverse events were injection-site reactions, reported in 70 participants (93%) of 75. Overall, 73 participants (97%) of 75 reported at least one solicited adverse event; the most common systemic symptoms were headache (five [20%] with 0·67 mg, 11 [44%] with 2 mg, and seven [28%] with 6 mg), and malaise or fatigue (five [20%] with 0·67 mg, seven [28%] with 2 mg, and two [8%] with 6 mg). The most common local solicited symptoms were administration site pain (23 [92%] with all three doses) and tenderness (21 [84%] with all three doses). Most solicited symptoms were reported as mild (19 [76%] with 0·67 mg, 20 [80%] with 2 mg, and 17 [68%] with 6 mg) and were self-limiting. Unsolicited symptoms were reported for 56 participants (75%) of 75 and were deemed treatment-related for 26 (35%). The most common unsolicited adverse events were infections, occurring in 27 participants (36%); six (8%) were deemed possibly related to study treatment. There were no laboratory abnormalities of grade 3 or higher that were related to study treatment; laboratory abnormalities were uncommon, except for 15 increases in creatine phosphokinase in 14 participants (three participants in the 0·67 mg group, three in the 2 mg group, and seven in the 6 mg group). Of these 15 increases, five (33%) were deemed possibly related to study treatment (one in the 2 mg group and four in the 6 mg group). Seroconversion measured by S1-ELISA occurred in 59 (86%) of 69 participants and 61 (94%) of 65 participants after two and three vaccinations, respectively. Neutralising antibodies were detected in 34 (50%) of 68 participants. T-cell responses were detected in 47 (71%) of 66 participants after two vaccinations and in 44 (76%) of 58 participants after three vaccinations. There were no differences in immune responses between dose groups after 6 weeks. At week 60, vaccine-induced humoral and cellular responses were detected in 51 (77%) of 66 participants and 42 (64%) of 66, respectively. INTERPRETATION: The GLS-5300 MERS coronavirus vaccine was well tolerated with no vaccine-associated serious adverse events. Immune responses were dose-independent, detected in more than 85% of participants after two vaccinations, and durable through 1 year of follow-up. The data support further development of the GLS-5300 vaccine, including additional studies to test the efficacy of GLS-5300 in a region endemic for MERS coronavirus. FUNDING: US Department of the Army and GeneOne Life Science.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , ADN Viral/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Vacunas Virales/inmunología , Adulto , Fatiga/inducido químicamente , Femenino , Cefalea/inducido químicamente , Humanos , Inmunidad Celular , Reacción en el Punto de Inyección , Masculino , Vacunas Virales/administración & dosificación , Vacunas Virales/efectos adversos , Adulto Joven
11.
Clin Cancer Res ; 24(23): 6015-6027, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30262507

RESUMEN

PURPOSE: Cancer/testis antigens have emerged as attractive targets for cancer immunotherapy. Clinical studies have targeted MAGE-A3, a prototype antigen that is a member of the MAGE-A family of antigens, in melanoma and lung carcinoma. However, these studies have not yet had a significant impact due to poor CD8+ T-cell immunogenicity, platform toxicity, or perhaps limited target antigen availability. In this study, we develop an improved MAGE-A immunogen with cross-reactivity to multiple family members. EXPERIMENTAL DESIGN: In this study, we analyzed MAGE-A expression in The Cancer Genome Atlas and observed that many patients express multiple MAGE-A isoforms, not limited to MAGE-A3, simultaneously in diverse tumors. On the basis of this, we designed an optimized consensus MAGE-A DNA vaccine capable of cross-reacting with many MAGE-A isoforms, and tested immunogenicity and antitumor activity of this vaccine in a relevant autochthonous melanoma model. RESULTS: Immunization of this MAGE-A vaccine by electroporation in C57Bl/6 mice generated robust IFNγ and TNFα CD8+ T-cell responses as well as cytotoxic CD107a/IFNγ/T-bet triple-positive responses against multiple isoforms. Furthermore, this MAGE-A DNA immunogen generated a cross-reactive immune response in 14 of 15 genetically diverse, outbred mice. We tested the antitumor activity of this MAGE-A DNA vaccine in Tyr::CreER;BRAFCa/+;Ptenlox/lox transgenic mice that develop melanoma upon tamoxifen induction. The MAGE-A DNA therapeutic vaccine significantly slowed tumor growth and doubled median mouse survival. CONCLUSIONS: These results support the clinical use of consensus MAGE-A immunogens with the capacity to target multiple MAGE-A family members to prevent tumor immune escape.


Asunto(s)
Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Reacciones Cruzadas/inmunología , Inmunoterapia , Vacunas de ADN/inmunología , Animales , Antígenos de Neoplasias/genética , Vacunas contra el Cáncer/genética , Línea Celular Tumoral , Citocinas/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Tolerancia Inmunológica , Inmunogenicidad Vacunal , Inmunoterapia/métodos , Melanoma/genética , Melanoma/inmunología , Melanoma/patología , Melanoma/terapia , Ratones , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Clin Cancer Res ; 24(5): 1190-1201, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29269377

RESUMEN

Purpose: Fibroblast activation protein (FAP) is overexpressed in cancer-associated fibroblasts and is an interesting target for cancer immune therapy, with prior studies indicating a potential to affect the tumor stroma. Our aim was to extend this earlier work through the development of a novel FAP immunogen with improved capacity to break tolerance for use in combination with tumor antigen vaccines.Experimental Design: We used a synthetic consensus (SynCon) sequence approach to provide MHC class II help to support breaking of tolerance. We evaluated immune responses and antitumor activity of this novel FAP vaccine in preclinical studies, and correlated these findings to patient data.Results: This SynCon FAP DNA vaccine was capable of breaking tolerance and inducing both CD8+ and CD4+ immune responses. In genetically diverse, outbred mice, the SynCon FAP DNA vaccine was superior at breaking tolerance compared with a native mouse FAP immunogen. In several tumor models, the SynCon FAP DNA vaccine synergized with other tumor antigen-specific DNA vaccines to enhance antitumor immunity. Evaluation of the tumor microenvironment showed increased CD8+ T-cell infiltration and a decreased macrophage infiltration driven by FAP immunization. We extended this to patient data from The Cancer Genome Atlas, where we find high FAP expression correlates with high macrophage and low CD8+ T-cell infiltration.Conclusions: These results suggest that immune therapy targeting tumor antigens in combination with a microconsensus FAP vaccine provides two-fisted punch-inducing responses that target both the tumor microenvironment and tumor cells directly. Clin Cancer Res; 24(5); 1190-201. ©2018 AACR.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Gelatinasas/antagonistas & inhibidores , Inmunoterapia Activa/métodos , Proteínas de la Membrana/antagonistas & inhibidores , Neoplasias/terapia , Vacunas de ADN/farmacología , Animales , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/uso terapéutico , Línea Celular Tumoral , Endopeptidasas , Femenino , Gelatinasas/inmunología , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias/inmunología , Serina Endopeptidasas/inmunología , Microambiente Tumoral/inmunología , Vacunas de ADN/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Cancer Res ; 78(22): 6363-6370, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30287678

RESUMEN

Antibody-based immune therapies targeting the T-cell checkpoint molecules CTLA-4 and PD-1 have affected cancer therapy. However, this immune therapy requires complex manufacturing and frequent dosing, limiting the global use of this treatment. Here, we focused on the development of a DNA-encoded monoclonal antibody (DMAb) approach for delivery of anti-CTLA-4 monoclonal antibodies in vivo With this technology, engineered and formulated DMAb plasmids encoding IgG inserts were directly injected into muscle and delivered intracellularly by electroporation, leading to in vivo expression and secretion of the encoded IgG. DMAb expression from a single dose can continue for several months without the need for repeated administration. Delivery of an optimized DMAb encoding anti-mouse CTLA-4 IgG resulted in high serum levels of the antibody as well as tumor regression in Sa1N and CT26 tumor models. DNA-delivery of the anti-human CTLA-4 antibodies ipilimumab and tremelimumab in mice achieved potent peak levels of approximately 85 and 58 µg/mL, respectively. These DMAb exhibited prolonged expression, with maintenance of serum levels at or above 15 µg/mL for over a year. Anti-human CTLA-4 DMAbs produced in vivo bound to human CTLA-4 protein expressed on stimulated human peripheral blood mononuclear cells and induced T-cell activation in a functional assay ex vivo In summary, direct in vivo expression of DMAb encoding checkpoint inhibitors serves as a novel tool for immunotherapy that could significantly improve availability and provide broader access to such therapies.Significance: DNA-encoded monoclonal antibodies represent a novel technology for delivery and expression of immune checkpoint blockade antibodies, thus expanding patient access to, and possible clinical applications of, these therapies. Cancer Res; 78(22); 6363-70. ©2018 AACR.


Asunto(s)
Anticuerpos Monoclonales/química , Antígeno CTLA-4/inmunología , ADN/química , Neoplasias/inmunología , Neoplasias/terapia , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados , Antígeno CTLA-4/antagonistas & inhibidores , Línea Celular Tumoral , Células HEK293 , Humanos , Inmunoglobulina G/química , Inmunoterapia , Concentración 50 Inhibidora , Ipilimumab/farmacología , Leucocitos Mononucleares/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Plásmidos/metabolismo , Linfocitos T/metabolismo
14.
Nat Commun ; 8(1): 2122, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29242535

RESUMEN

Cross-presentation is a critical function of dendritic cells (DCs) required for induction of antitumor immune responses and success of cancer immunotherapy. It is established that tumor-associated DCs are defective in their ability to cross-present antigens. However, the mechanisms driving these defects are still unknown. We find that impaired cross-presentation in DCs is largely associated with defect in trafficking of peptide-MHC class I (pMHC) complexes to the cell surface. DCs in tumor-bearing hosts accumulate lipid bodies (LB) containing electrophilic oxidatively truncated (ox-tr) lipids. These ox-tr-LB, but not LB present in control DCs, covalently bind to chaperone heat shock protein 70. This interaction prevents the translocation of pMHC to cell surface by causing the accumulation of pMHC inside late endosomes/lysosomes. As a result, tumor-associated DCs are no longer able to stimulate adequate CD8 T cells responses. In conclusion, this study demonstrates a mechanism regulating cross-presentation in cancer and suggests potential therapeutic avenues.


Asunto(s)
Antígenos/inmunología , Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Gotas Lipídicas/inmunología , Lípidos/inmunología , Neoplasias/inmunología , Animales , Presentación de Antígeno/inmunología , Línea Celular Tumoral , Células Dendríticas/metabolismo , Endosomas/inmunología , Endosomas/metabolismo , Femenino , Proteínas HSP70 de Choque Térmico/inmunología , Proteínas HSP70 de Choque Térmico/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Gotas Lipídicas/metabolismo , Lisosomas/inmunología , Lisosomas/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias/metabolismo , Neoplasias/patología , Unión Proteica
15.
Cell Cycle ; 15(15): 2077-86, 2016 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-27295308

RESUMEN

Proliferation and migration of epidermal keratinocytes are essential for proper cutaneous wound closure after injury. αv integrins and several of their ligands-vitronectin, TGFß and thrombospondin-are up-regulated in healing wounds. However, the role of αv integrins in wound re-epithelialization is unknown. Here, we show that genetic depletion or antibody-mediated blockade of pan-integrin αv, or the specific heterodimer αvß6, in keratinocytes limited epidermal proliferation at the wound edge and prevented re-epithelialization of wounded human organotypic skin both in vivo and in vitro. While we did not observe a migration defect upon αv blockade in vivo, αv was necessary for keratinocyte migration over longer distances in organotypic skin. Integrin αv is required for local activation of latent TGFß, and the wound healing defect in the setting of integrin αv loss was rescued by exogenous, active TGFß, indicating that the αv-TGFß signaling axis is a critical component of the normal epidermal wound healing program. As chronic wounds are associated with decreased TGFß signaling, restoration of TGFß activity may have therapeutic utility in some clinical settings.


Asunto(s)
Epidermis/patología , Integrina alfaV/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Cicatrización de Heridas , Animales , Anticuerpos Bloqueadores/farmacología , Movimiento Celular , Proliferación Celular/efectos de los fármacos , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Epitelio/patología , Células HEK293 , Humanos , Recién Nacido , Masculino , Ratones SCID , Transducción de Señal/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
16.
Elife ; 52016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-27115344

RESUMEN

The association between pregnancy and altered cutaneous pigmentation has been documented for over two millennia, suggesting that sex hormones play a role in regulating epidermal melanocyte (MC) homeostasis. Here we show that physiologic estrogen (17ß-estradiol) and progesterone reciprocally regulate melanin synthesis. This is intriguing given that we also show that normal primary human MCs lack classical estrogen or progesterone receptors (ER or PR). Utilizing both genetic and pharmacologic approaches, we establish that sex steroid effects on human pigment synthesis are mediated by the membrane-bound, steroid hormone receptors G protein-coupled estrogen receptor (GPER), and progestin and adipoQ receptor 7 (PAQR7). Activity of these receptors was activated or inhibited by synthetic estrogen or progesterone analogs that do not bind to ER or PR. As safe and effective treatment options for skin pigmentation disorders are limited, these specific GPER and PAQR7 ligands may represent a novel class of therapeutics.


Asunto(s)
Estrógenos/metabolismo , Melaninas/metabolismo , Progesterona/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Progesterona/metabolismo , Pigmentación de la Piel , Células Cultivadas , Humanos , Melanocitos/metabolismo
17.
NPJ Vaccines ; 1: 16021, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29263859

RESUMEN

Significant concerns have been raised owing to the rapid global spread of infection and disease caused by the mosquito-borne Zika virus (ZIKV). Recent studies suggest that ZIKV can also be transmitted sexually, further increasing the exposure risk for this virus. Associated with this spread is a dramatic increase in cases of microcephaly and additional congenital abnormalities in infants of ZIKV-infected mothers, as well as a rise in the occurrence of Guillain Barre' syndrome in infected adults. Importantly, there are no licensed therapies or vaccines against ZIKV infection. In this study, we generate and evaluate the in vivo efficacy of a novel, synthetic, DNA vaccine targeting the pre-membrane+envelope proteins (prME) of ZIKV. Following initial in vitro development and evaluation studies of the plasmid construct, mice and non-human primates were immunised with this prME DNA-based immunogen through electroporation-mediated enhanced DNA delivery. Vaccinated animals were found to generate antigen-specific cellular and humoral immunity and neutralisation activity. In mice lacking receptors for interferon (IFN)-α/ß (designated IFNAR-/-) immunisation with this DNA vaccine induced, following in vivo viral challenge, 100% protection against infection-associated weight loss or death in addition to preventing viral pathology in brain tissue. In addition, passive transfer of non-human primate anti-ZIKV immune serum protected IFNAR-/- mice against subsequent viral challenge. This study in NHP and in a pathogenic mouse model supports the importance of immune responses targeting prME in ZIKV infection and suggests that additional research on this vaccine approach may have relevance for ZIKV control and disease prevention in humans.

18.
J Invest Dermatol ; 135(9): 2258-2265, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25848980

RESUMEN

IQ motif-containing GTPase-activating protein (IQGAP) scaffolding proteins regulate many essential cellular processes including growth factor receptor signaling, cytoskeletal rearrangement, adhesion, and proliferation and are highly expressed in many cancers. Using genetically engineered human skin tissue in vivo, we demonstrate that diminished, sub-physiologic expression of IQGAP1 or IQGAP3 is sufficient to maintain normal epidermal homeostasis, whereas significantly higher levels are required to support tumorigenesis. To target this tumor-specific IQGAP requirement in vivo, we engineered epidermal keratinocytes to express individual IQGAP protein domains designed to compete with endogenous IQGAPs for effector protein binding. Expression of the IQGAP1-IQ motif decoy domain in epidermal tissue in vivo inhibits oncogenic Ras-driven mitogen-activated protein kinase signaling and antagonizes tumorigenesis, without disrupting normal epidermal proliferation or differentiation. These findings define essential non-redundant roles for IQGAP1 and IQGAP3 in the epidermis and demonstrate the potential of IQGAP antagonism for cancer therapy.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/metabolismo , Epidermis/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Neoplasias Cutáneas/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Biopsia con Aguja , Western Blotting , Carcinoma de Células Escamosas/patología , Proliferación Celular , Células Cultivadas , Progresión de la Enfermedad , Epidermis/patología , Proteínas Activadoras de GTPasa/genética , Homeostasis/fisiología , Humanos , Inmunohistoquímica , Queratinocitos/citología , Queratinocitos/metabolismo , Estructura Terciaria de Proteína , Valores de Referencia , Neoplasias Cutáneas/patología , Ingeniería de Tejidos , Proteínas Activadoras de ras GTPasa/genética
19.
Cancer Discov ; 5(10): 1072-85, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26183406

RESUMEN

UNLABELLED: Deletion of the entire CDKN2B-CDKN2A gene cluster is among the most common genetic events in cancer. The tumor-promoting effects are generally attributed to loss of CDKN2A-encoded p16 and p14ARF tumor suppressors. The degree to which the associated CDKN2B-encoded p15 loss contributes to human tumorigenesis is unclear. Here, we show that CDKN2B is highly upregulated in benign melanocytic nevi, contributes to maintaining nevus melanocytes in a growth-arrested premalignant state, and is commonly lost in melanoma. Using primary melanocytes isolated directly from freshly excised human nevi naturally expressing the common BRAF(V600E)-activating mutation, nevi progressing to melanoma, and normal melanocytes engineered to inducibly express BRAF(V600E), we show that BRAF activation results in reversible, TGFß-dependent, p15 induction that halts proliferation. Furthermore, we engineer human skin grafts containing nevus-derived melanocytes to establish a new, architecturally faithful, in vivo melanoma model, and demonstrate that p15 loss promotes the transition from benign nevus to melanoma. SIGNIFICANCE: Although BRAF(V600E) mutations cause melanocytes to initially proliferate into benign moles, mechanisms responsible for their eventual growth arrest are unknown. Using melanocytes from human moles, we show that BRAF activation leads to a CDKN2B induction that is critical for restraining BRAF oncogenic effects, and when lost, contributes to melanoma.


Asunto(s)
Inhibidor p15 de las Quinasas Dependientes de la Ciclina/deficiencia , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Melanoma/genética , Melanoma/patología , Nevo/genética , Nevo/patología , Animales , Puntos de Control del Ciclo Celular/genética , Transformación Celular Neoplásica/genética , Cromatina/genética , Cromatina/metabolismo , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Inmunohistoquímica , Melanocitos/metabolismo , Melanocitos/patología , Melanoma/metabolismo , Ratones , Mutación , Nevo/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Transducción de Señal , Activación Transcripcional , Factor de Crecimiento Transformador beta/metabolismo
20.
Cancer Biol Ther ; 15(9): 1113-6, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24919121

RESUMEN

Kindler syndrome (KS) in humans is a severe skin blistering disease associated with inflammation and increased risk of epidermal squamous cell carcinoma (SCC). This disease is known to be caused by loss-of-function mutations in Kindlin-1, a focal adhesion ß-integrin binding protein. Thus far, it has been unclear what specific signaling events occur in KS keratinocytes to promote tumorigenesis, especially since loss of ß-integrins and focal adhesion complexes has been previously shown to prevent or delay tumor formation. In the April issue of Nature Medicine, Rognoni and colleagues generate a transgenic mouse lacking Kindlin-1 in the epidermis to model the key features of KS, and show that Kindlin-1 regulates Wnt and TGFß signaling independent of ß-integrins. These ß1-integrin-independent functions of Kindlin-1 may contribute to the increased SCC risk in KS patients.


Asunto(s)
Vesícula , Proteínas Portadoras/fisiología , Proliferación Celular , Epidermólisis Ampollosa , Queratinocitos/metabolismo , Enfermedades Periodontales , Trastornos por Fotosensibilidad , Piel/citología , Células Madre/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA