Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Microcirculation ; 31(5): e12859, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38818977

RESUMEN

OBJECTIVE: The endothelium regulates crucial aspects of vascular function, including hemostasis, vasomotor tone, proliferation, immune cell adhesion, and microvascular permeability. Endothelial cells (ECs), especially in arterioles, are pivotal for flow distribution and peripheral resistance regulation. Investigating vascular endothelium physiology, particularly in microvascular ECs, demands precise isolation and culturing techniques. METHODS: Freshly isolated ECs are vital for examining protein expression, ion channel behavior, and calcium dynamics. Establishing primary endothelial cell cultures is crucial for unraveling vascular functions and understanding intact microvessel endothelium roles. Despite the significance, detailed protocols and comparisons with intact vessels are scarce in microvascular research. We developed a reproducible method to isolate microvascular ECs, assessing substrate influence by cultivating cells on fibronectin and gelatin matrix gels. This comparative approach enhances our understanding of microvascular endothelial cell biology. RESULTS: Microvascular mesenteric ECs expressed key markers (VE-cadherin and eNOS) in both matrix gels, confirming cell culture purity. Under uncoated conditions, ECs were undetected, whereas proteins linked to smooth muscle cells and fibroblasts were evident. Examining endothelial cell (EC) physiological dynamics on distinct matrix substrates revealed comparable cell length, shape, and Ca2+ elevations in both male and female ECs on gelatin and fibronectin matrix gels. Gelatin-cultured ECs exhibited analogous membrane potential responses to acetylcholine (ACh) or adenosine triphosphate (ATP), contrasting with their fibronectin-cultured counterparts. In the absence of stimulation, fibronectin-cultured ECs displayed a more depolarized resting membrane potential than gelatin-cultured ECs. CONCLUSIONS: Gelatin-cultured ECs demonstrated electrical behaviors akin to intact endothelium from mouse mesenteric arteries, thus advancing our understanding of endothelial cell behavior within diverse microenvironments.


Asunto(s)
Células Endoteliales , Gelatina , Microvasos , Óxido Nítrico Sintasa de Tipo III , Animales , Células Endoteliales/metabolismo , Células Endoteliales/citología , Ratones , Femenino , Masculino , Microvasos/citología , Microvasos/metabolismo , Microvasos/fisiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Células Cultivadas , Fibronectinas/metabolismo , Fibronectinas/farmacología , Geles , Antígenos CD/metabolismo , Cadherinas/metabolismo , Cultivo Primario de Células , Endotelio Vascular/metabolismo , Endotelio Vascular/citología
2.
Am J Physiol Heart Circ Physiol ; 324(5): H610-H623, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36867447

RESUMEN

Microvascular hyperpermeability is a hallmark of inflammation. Many negative effects of hyperpermeability are due to its persistence beyond what is required for preserving organ function. Therefore, we propose that targeted therapeutic approaches focusing on mechanisms that terminate hyperpermeability would avoid the negative effects of prolonged hyperpermeability while retaining its short-term beneficial effects. We tested the hypothesis that inflammatory agonist signaling leads to hyperpermeability and initiates a delayed cascade of cAMP-dependent pathways that causes inactivation of hyperpermeability. We applied platelet-activating factor (PAF) and vascular endothelial growth factor (VEGF) to induce hyperpermeability. We used an Epac1 agonist to selectively stimulate exchange protein activated by cAMP (Epac1) and promote inactivation of hyperpermeability. Stimulation of Epac1 inactivated agonist-induced hyperpermeability in the mouse cremaster muscle and in human microvascular endothelial cells (HMVECs). PAF induced nitric oxide (NO) production and hyperpermeability within 1 min and NO-dependent increased cAMP concentration in about 15-20 min in HMVECs. PAF triggered phosphorylation of vasodilator-stimulated phosphoprotein (VASP) in a NO-dependent manner. Epac1 stimulation promoted cytosol-to-membrane eNOS translocation in HMVECs and in myocardial microvascular endothelial (MyEnd) cells from wild-type mice, but not in MyEnd cells from VASP knockout mice. We demonstrate that PAF and VEGF cause hyperpermeability and stimulate the cAMP/Epac1 pathway to inactivate agonist-induced endothelial/microvascular hyperpermeability. Inactivation involves VASP-assisted translocation of eNOS from the cytosol to the endothelial cell membrane. We demonstrate that hyperpermeability is a self-limiting process, whose timed inactivation is an intrinsic property of the microvascular endothelium that maintains vascular homeostasis in response to inflammatory conditions.NEW & NOTEWORTHY Termination of microvascular hyperpermeability has been so far accepted to be a passive result of the removal of the applied proinflammatory agonists. We provide in vivo and in vitro evidence that 1) inactivation of hyperpermeability is an actively regulated process, 2) proinflammatory agonists (PAF and VEGF) stimulate microvascular hyperpermeability and initiate endothelial mechanisms that terminate hyperpermeability, and 3) eNOS location-translocation is critical in the activation-inactivation cascade of endothelial hyperpermeability.


Asunto(s)
Células Endoteliales , Factor A de Crecimiento Endotelial Vascular , Ratones , Humanos , Animales , Células Endoteliales/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Inflamación/metabolismo , Factor de Activación Plaquetaria/metabolismo , Factor de Activación Plaquetaria/farmacología , Ratones Noqueados , Endotelio/metabolismo , Permeabilidad Capilar , Endotelio Vascular/metabolismo
3.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806312

RESUMEN

Microcirculation homeostasis depends on several channels permeable to ions and/or small molecules that facilitate the regulation of the vasomotor tone, hyperpermeability, the blood-brain barrier, and the neurovascular coupling function. Connexin (Cxs) and Pannexin (Panxs) large-pore channel proteins are implicated in several aspects of vascular physiology. The permeation of ions (i.e., Ca2+) and key metabolites (ATP, prostaglandins, D-serine, etc.) through Cxs (i.e., gap junction channels or hemichannels) and Panxs proteins plays a vital role in intercellular communication and maintaining vascular homeostasis. Therefore, dysregulation or genetic pathologies associated with these channels promote deleterious tissue consequences. This review provides an overview of current knowledge concerning the physiological role of these large-pore molecule channels in microcirculation (arterioles, capillaries, venules) and in the neurovascular coupling function.


Asunto(s)
Conexinas , Acoplamiento Neurovascular , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Canales Iónicos/metabolismo , Microcirculación
4.
Am J Physiol Heart Circ Physiol ; 321(6): H1083-H1095, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34652985

RESUMEN

Nitric oxide (NO) is a key factor in inflammation. Endothelial nitric oxide synthase (eNOS), whose activity increases after stimulation with proinflammatory cytokines, produces NO in endothelium. NO activates two pathways: 1) soluble guanylate cyclase-protein kinase G and 2) S-nitrosylation (NO-induced modification of free-thiol cysteines in proteins). S-nitrosylation affects phosphorylation, localization, and protein interactions. NO is classically described as a negative regulator of leukocyte adhesion to endothelial cells. However, agonists activating NO production induce a fast leukocyte adhesion, which suggests that NO might positively regulate leukocyte adhesion. We tested the hypothesis that eNOS-induced NO promotes leukocyte adhesion through the S-nitrosylation pathway. We stimulated leukocyte adhesion to endothelium in vitro and in vivo using tumor necrosis factor-α (TNF-α) as proinflammatory agonist. ICAM-1 changes were evaluated by immunofluorescence, subcellular fractionation, immunoprecipitation, and fluorescence recovery after photobleaching (FRAP). Protein kinase Cζ (PKCζ) activity and S-nitrosylation were evaluated by Western blot analysis and biotin switch method, respectively. TNF-α, at short times of stimulation, activated the eNOS S-nitrosylation pathway and caused leukocyte adhesion to endothelial cells in vivo and in vitro. TNF-α-induced NO led to changes in ICAM-1 at the cell surface, which are characteristic of clustering. TNF-α-induced NO also produced S-nitrosylation and phosphorylation of PKCζ, association of PKCζ with ICAM-1, and ICAM-1 phosphorylation. The inhibition of PKCζ blocked leukocyte adhesion induced by TNF-α. Mass spectrometry analysis of purified PKCζ identified cysteine 503 as the only S-nitrosylated residue in the kinase domain of the protein. Our results reveal a new eNOS S-nitrosylation-dependent mechanism that induces leukocyte adhesion and suggests that S-nitrosylation of PKCζ may be an important regulatory step in early leukocyte adhesion in inflammation.NEW & NOTEWORTHY Contrary to the well-established inhibitory role of NO in leukocyte adhesion, we demonstrate a positive role of nitric oxide in this process. We demonstrate that NO induced by eNOS after TNF-α treatment induces early leukocyte adhesion activating the S-nitrosylation pathway. Our data suggest that PKCζ S-nitrosylation may be a key step in this process.


Asunto(s)
Músculos Abdominales/irrigación sanguínea , Adhesión Celular , Células Endoteliales/efectos de los fármacos , Leucocitos/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Animales , Línea Celular , Técnicas de Cocultivo , Células Endoteliales/enzimología , Activación Enzimática , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Masculino , Ratones Endogámicos C57BL , Fosforilación , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal , Factores de Tiempo
5.
Nitric Oxide ; 87: 52-59, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30862477

RESUMEN

S-nitrosylation, the modification by nitric oxide of free sulfhydryl groups in cysteines, has become an important regulatory mechanism in carcinogenesis and metastasis. S-nitrosylation of targets in tumor cells contributes to metastasis regulating epithelial to mesenchymal transition, migration and invasion. In the tumor environment, the role of S-nitrosylation in endothelium has not been addressed; however, the evidence points out that S-nitrosylation of endothelial proteins may regulate angiogenesis, adhesion of tumor cells to the endothelium, intra and extravasation of tumor cells and contribute to metastasis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Metástasis de la Neoplasia/fisiopatología , Neovascularización Patológica/fisiopatología , Proteínas/metabolismo , Animales , Endotelio Vascular/metabolismo , Humanos , Nitratos/metabolismo , Nitrosación , Proteínas/química
6.
Am J Physiol Heart Circ Physiol ; 313(1): H179-H189, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28476918

RESUMEN

Approaches to reduce excessive edema due to the microvascular hyperpermeability that occurs during ischemia-reperfusion (I/R) are needed to prevent muscle compartment syndrome. We tested the hypothesis that cAMP-activated mechanisms actively restore barrier integrity in postischemic striated muscle. We found, using I/R in intact muscles and hypoxia-reoxygenation (H/R, an I/R mimic) in human microvascular endothelial cells (HMVECs), that hyperpermeability can be deactivated by increasing cAMP levels through application of forskolin. This effect was seen whether or not the hyperpermeability was accompanied by increased mRNA expression of VEGF, which occurred only after 4 h of ischemia. We found that cAMP increases in HMVECs after H/R, suggesting that cAMP-mediated restoration of barrier function is a physiological mechanism. We explored the mechanisms underlying this effect of cAMP. We found that exchange protein activated by cAMP 1 (Epac1), a downstream effector of cAMP that stimulates Rap1 to enhance cell adhesion, was activated only at or after reoxygenation. Thus, when Rap1 was depleted by small interfering RNA, H/R-induced hyperpermeability persisted even when forskolin was applied. We demonstrate that 1) VEGF mRNA expression is not involved in hyperpermeability after brief ischemia, 2) elevation of cAMP concentration at reperfusion deactivates hyperpermeability, and 3) cAMP activates the Epac1-Rap1 pathway to restore normal microvascular permeability. Our data support the novel concepts that 1) different hyperpermeability mechanisms operate after brief and prolonged ischemia and 2) cAMP concentration elevation during reperfusion contributes to deactivation of I/R-induced hyperpermeability through the Epac-Rap1 pathway. Endothelial cAMP management at reperfusion may be therapeutic in I/R injury.NEW & NOTEWORTHY Here, we demonstrate that 1) stimulation of cAMP production deactivates ischemia-reperfusion-induced hyperpermeability in muscle and endothelial cells; 2) VEGF mRNA expression is not enhanced by brief ischemia, suggesting that VEGF mechanisms do not activate immediate postischemic hyperpermeability; and 3) deactivation mechanisms operate via cAMP-exchange protein activated by cAMP 1-Rap1 to restore integrity of the endothelial barrier.


Asunto(s)
Permeabilidad Capilar , AMP Cíclico/metabolismo , Endotelio Vascular/fisiopatología , Daño por Reperfusión/fisiopatología , Proteínas de Unión a Telómeros/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Cricetinae , Masculino , Mesocricetus , Ratas , Ratas Sprague-Dawley
7.
Am J Physiol Heart Circ Physiol ; 313(1): H66-H71, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28526707

RESUMEN

We tested the hypothesis that platelet-activating factor (PAF) induces S-nitrosylation of vasodilator-stimulated phosphoprotein (VASP) as a mechanism to reduce microvascular endothelial barrier integrity and stimulate hyperpermeability. PAF elevated S-nitrosylation of VASP above baseline levels in different endothelial cells and caused hyperpermeability. To ascertain the importance of endothelial nitric oxide synthase (eNOS) subcellular location in this process, we used ECV-304 cells transfected with cytosolic eNOS (GFPeNOSG2A) and plasma membrane eNOS (GFPeNOSCAAX). PAF induced S-nitrosylation of VASP in cells with cytosolic eNOS but not in cells wherein eNOS is anchored to the cell membrane. Reconstitution of VASP knockout myocardial endothelial cells with cysteine mutants of VASP demonstrated that S-nitrosylation of cysteine 64 is associated with PAF-induced hyperpermeability. We propose that regulation of VASP contributes to endothelial cell barrier integrity and to the onset of hyperpermeability. S-nitrosylation of VASP inhibits its function in barrier integrity and leads to endothelial monolayer hyperpermeability in response to PAF, a representative proinflammatory agonist.NEW & NOTEWORTHY Here, we demonstrate that S-nitrosylation of vasodilator-stimulated phosphoprotein (VASP) on C64 is a mechanism for the onset of platelet-activating factor-induced hyperpermeability. Our results reveal a dual role of VASP in endothelial permeability. In addition to its well-documented function in barrier integrity, we show that S-nitrosylation of VASP contributes to the onset of endothelial permeability.


Asunto(s)
Permeabilidad Capilar/fisiología , Moléculas de Adhesión Celular/metabolismo , Cisteína/metabolismo , Células Endoteliales/fisiología , Proteínas de Microfilamentos/metabolismo , Óxido Nítrico/metabolismo , Fosfoproteínas/metabolismo , Vasculitis/metabolismo , Animales , Capilares , Bovinos , Células Cultivadas , Humanos , Mediadores de Inflamación/metabolismo
8.
Am J Physiol Heart Circ Physiol ; 310(8): H1039-44, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26921435

RESUMEN

The adherens junction complex, composed mainly of vascular endothelial (VE)-cadherin, ß-catenin, p120, and γ-catenin, is the main element of the endothelial barrier in postcapillary venules.S-nitrosylation of ß-catenin and p120 is an important step in proinflammatory agents-induced hyperpermeability. We investigated in vitro and in vivo whether or not VE-cadherin isS-nitrosylated using platelet-activating factor (PAF) as agonist. We report that PAF-stimulates S-nitrosylation of VE-cadherin, which disrupts its association with ß-catenin. In addition, based on inhibition of nitric oxide production, our results strongly suggest that S-nitrosylation is required for VE-cadherin phosphorylation on tyrosine and for its internalization. Our results unveil an important mechanism to regulate phosphorylation of junctional proteins in association with S-nitrosylation.


Asunto(s)
Uniones Adherentes/metabolismo , Antígenos CD/metabolismo , Cadherinas/metabolismo , Permeabilidad Capilar , Vasos Coronarios/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Procesamiento Proteico-Postraduccional , Vénulas/metabolismo , Uniones Adherentes/efectos de los fármacos , Animales , Transporte Biológico , Permeabilidad Capilar/efectos de los fármacos , Cateninas/metabolismo , Bovinos , Línea Celular , Vasos Coronarios/efectos de los fármacos , Cricetinae , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Ratones , Óxido Nítrico/metabolismo , Nitrosación , Fosforilación , Factor de Activación Plaquetaria/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transducción de Señal , Factores de Tiempo , Tirosina , beta Catenina/metabolismo , Catenina delta
9.
Crit Care Med ; 42(3): e200-10, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24317495

RESUMEN

OBJECTIVE: Microvascular dysfunction is a key element in the development of the multiple organ dysfunction syndrome. Although the mechanisms for this response are unclear, RBC adhesion to endothelium may initiate intravascular occlusion leading to ischemic tissue injury. Thus, we tested the hypothesis that trauma-hemorrhage induces RBC-endothelial cell adhesion. DESIGN: Prospective in vivo and in vitro animal study and analysis of patient blood samples. SETTING: University research laboratory and hospital emergency and trauma units. INTERVENTION: We initially assayed RBC adhesion to endothelial cells in vitro using RBCs obtained from rats subjected to trauma-hemorrhagic shock or sham shock as well as from severely injured trauma patients. Subsequently, we measured the role of putative RBCs and endothelial cell receptors in the increased RBC-endothelial cell adhesive response. MAIN RESULTS: In both rats and humans, trauma-hemorrhagic shock increased RBC adhesion to endothelium as well as increasing several putative RBC surface adhesion molecules including CD36. The critical factor leading to RBC-endothelial cell adhesion was increased surface RBC CD36 expression. Adhesion of trauma-hemorrhagic shock RBCs was mediated, at least in part, by the binding of RBC CD36 to its cognate endothelial receptors (αVß3 and VCAM-1). Gut-derived factors carried in the intestinal lymphatics triggered these trauma-hemorrhagic shock-induced RBC changes because 1) preventing trauma-hemorrhagic shock intestinal lymph from reaching the systemic circulation abrogated the RBC effects, 2) in vitro incubation of naïve whole blood with trauma-hemorrhagic shock lymph replicated the in vivo trauma-hemorrhagic shock-induced RBC changes while 3) injection of trauma-hemorrhagic shock lymph into naïve animals recreated the RBC changes observed after actual trauma-hemorrhagic shock. CONCLUSIONS: 1) Trauma-hemorrhagic shock induces rapid RBC adhesion to endothelial cells in patients and animals. 2) Increased RBC CD36 expression characterizes the RBC-adhesive phenotype. 3) The RBC phenotypic and functional changes were induced by gut-derived humoral factors. These novel findings may explain the microvascular dysfunction occurring after trauma-hemorrhagic shock, sepsis, and other stress states.


Asunto(s)
Antígenos CD36/genética , Eritrocitos/citología , Insuficiencia Multiorgánica/genética , Choque Traumático/genética , Animales , Antígenos CD36/metabolismo , Adhesión Celular/genética , Modelos Animales de Enfermedad , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Eritrocitos/fisiología , Regulación de la Expresión Génica , Humanos , Técnicas In Vitro , Masculino , Insuficiencia Multiorgánica/fisiopatología , Fenotipo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Muestreo , Sensibilidad y Especificidad , Choque Hemorrágico/genética , Choque Hemorrágico/metabolismo , Choque Hemorrágico/fisiopatología , Choque Traumático/metabolismo , Choque Traumático/fisiopatología
10.
Circ Res ; 111(5): 553-63, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22777005

RESUMEN

RATIONALE: Endothelial adherens junction proteins constitute an important element in the control of microvascular permeability. Platelet-activating factor (PAF) increases permeability to macromolecules via translocation of endothelial nitric oxide synthase (eNOS) to cytosol and stimulation of eNOS-derived nitric oxide signaling cascade. The mechanisms by which nitric oxide signaling regulates permeability at adherens junctions are still incompletely understood. OBJECTIVE: We explored the hypothesis that PAF stimulates hyperpermeability via S-nitrosation (SNO) of adherens junction proteins. METHODS AND RESULTS: We measured PAF-stimulated SNO of ß-catenin and p120-catenin (p120) in 3 cell lines: ECV-eNOSGFP, EAhy926 (derived from human umbilical vein), and postcapillary venular endothelial cells (derived from bovine heart endothelium) and in the mouse cremaster muscle in vivo. SNO correlated with diminished abundance of ß-catenin and p120 at the adherens junction and with hyperpermeability. Tumor necrosis factor-α increased nitric oxide production and caused similar increase in SNO as PAF. To ascertain the importance of eNOS subcellular location in this process, we used ECV-304 cells transfected with cytosolic eNOS (GFPeNOSG2A) and plasma membrane eNOS (GFPeNOSCAAX). PAF induced SNO of ß-catenin and p120 and significantly diminished association between these proteins in cells with cytosolic eNOS but not in cells wherein eNOS is anchored to the cell membrane. Inhibitors of nitric oxide production and of SNO blocked PAF-induced SNO and hyperpermeability, whereas inhibition of the cGMP pathway had no effect. Mass spectrometry analysis of purified p120 identified cysteine 579 as the main S-nitrosated residue in the region that putatively interacts with vascular endothelial-cadherin. CONCLUSIONS: Our results demonstrate that agonist-induced SNO contributes to junctional membrane protein changes that enhance endothelial permeability.


Asunto(s)
Uniones Adherentes/metabolismo , Permeabilidad Capilar/fisiología , Cateninas/metabolismo , Células Endoteliales/metabolismo , Transducción de Señal/fisiología , beta Catenina/metabolismo , Secuencia de Aminoácidos , Animales , Permeabilidad Capilar/efectos de los fármacos , Cateninas/genética , Bovinos , Proteínas Fluorescentes Verdes/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Nitrosación/fisiología , Factor de Crecimiento Derivado de Plaquetas/farmacología , Transducción de Señal/efectos de los fármacos , Vénulas/citología , Catenina delta
11.
IUBMB Life ; 65(10): 819-26, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24078390

RESUMEN

S-Nitrosation is rapidly emerging as a regulatory mechanism in vascular biology, with particular importance in the onset of hyperpermeability induced by pro-inflammatory agents. This review focuses on the role of endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) in regulating S-Nitrosation of adherens junction proteins. We discuss evidence for translocation of eNOS, via caveolae, to the cytosol and analyze the significance of eNOS location for S-Nitrosation and onset of endothelial hyperpermeability to macromolecules.


Asunto(s)
Células Endoteliales/metabolismo , Óxido Nítrico Sintasa/genética , Óxido Nítrico/metabolismo , Permeabilidad , Caveolas/metabolismo , Citosol/metabolismo , Humanos , Óxido Nítrico/genética , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Nitrosación/genética
12.
J Vasc Res ; 50(6): 498-511, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24217770

RESUMEN

BACKGROUND/AIMS: Endothelial nitric oxide synthase (eNOS) is associated with caveolin-1 (Cav-1) in plasma membrane. We tested the hypothesis that eNOS activation by shear stress in resistance vessels depends on synchronized phosphorylation, dissociation from Cav-1 and translocation of the membrane-bound enzyme to Golgi and cytosol. METHODS: In isolated, perfused rat arterial mesenteric beds, we evaluated the effect of changes in flow rate (2-10 ml/min) on nitric oxide (NO) production, eNOS phosphorylation at serine 1177, eNOS subcellular distribution and co-immunoprecipitation with Cav-1, in the presence or absence of extracellular Ca(2+). RESULTS: Increases in flow induced a biphasic rise in NO production: a rapid transient phase (3-5-min) that peaked during the first 15 s, followed by a sustained phase, which lasted until the end of stimulation. Concomitantly, flow caused a rapid translocation of eNOS from the microsomal compartment to the cytosol and Golgi, paralleled by an increase in eNOS phosphorylation and a reduction in eNOS-Cav-1 association. Transient NO production, eNOS translocation and dissociation from Cav-1 depended on extracellular Ca(2+), while sustained NO production was abolished by the PI3K-Akt blocker wortmannin. CONCLUSIONS: In intact resistance vessels, changes in flow induce NO production by transient Ca(2+)-dependent eNOS translocation from membrane to intracellular compartments and sustained Ca(2+)-independent PI3K-Akt-mediated phosphorylation.


Asunto(s)
Arterias Mesentéricas/enzimología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Resistencia Vascular , Animales , Velocidad del Flujo Sanguíneo , Calcio/metabolismo , Caveolina 1/metabolismo , Activación Enzimática , Masculino , Mecanotransducción Celular , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Flujo Sanguíneo Regional , Serina , Circulación Esplácnica , Estrés Mecánico , Factores de Tiempo
13.
14.
J Biol Chem ; 286(35): 30409-30414, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21757745

RESUMEN

Endothelial NOS (eNOS)-derived NO is a key factor in regulating microvascular permeability. We demonstrated previously that eNOS translocation from the plasma membrane to the cytosol is required for hyperpermeability. Herein, we tested the hypothesis that eNOS activation in the cytosol is necessary for agonist-induced hyperpermeability. To study the fundamental properties of endothelial cell monolayer permeability, we generated ECV-304 cells that stably express cDNA constructs targeting eNOS to the cytosol or plasma membrane. eNOS-transfected ECV-304 cells recapitulate the eNOS translocation and permeability properties of postcapillary venular endothelial cells (Sánchez, F. A., Rana, R., Kim, D. D., Iwahashi, T., Zheng, R., Lal, B. K., Gordon, D. M., Meininger, C. J., and Durán, W. N. (2009) Proc. Natl. Acad. Sci. U.S.A. 106, 6849-6853). We used platelet-activating factor (PAF) as a proinflammatory agonist. PAF activated eNOS by increasing phosphorylation of Ser-1177 and inducing dephosphorylation of Thr-495, increasing NO production, and elevating permeability to FITC-dextran 70 in monolayers of cells expressing wild-type and cytosolic eNOS. PAF failed to increase permeability to FITC-dextran 70 in monolayers of cells transfected with eNOS targeted to the plasma membrane. Interestingly, this occurred despite eNOS Ser-1177 phosphorylation and production of comparable amounts of NO. Our results demonstrate that the presence of eNOS in the cytosol is necessary for PAF-induced hyperpermeability. Our data provide new insights into the dynamics of eNOS and eNOS-derived NO in the process of inflammation.


Asunto(s)
Citosol/enzimología , Óxido Nítrico Sintasa de Tipo III/fisiología , Calibración , Membrana Celular/metabolismo , Citosol/metabolismo , ADN Complementario/metabolismo , Humanos , Inflamación , Microscopía Fluorescente/métodos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/química , Permeabilidad , Fosforilación , Factor de Activación Plaquetaria/metabolismo , Transporte de Proteínas , Fracciones Subcelulares
15.
Am J Physiol Heart Circ Physiol ; 303(5): H597-604, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22730391

RESUMEN

Nitric oxide (NO) by activating soluble guanylyl cyclase (sGC) is involved in vascular homeostasis via induction of smooth muscle relaxation. In cardiovascular diseases (CVDs), endothelial dysfunction with altered vascular reactivity is mostly attributed to decreased NO bioavailability via oxidative stress. However, in several studies, relaxation to NO is only partially restored by exogenous NO donors, suggesting sGC impairment. Conflicting results have been reported regarding the nature of this impairment, ranging from decreased expression of one or both subunits of sGC to heme oxidation. We showed that sGC activity is impaired by thiol S-nitrosation. Recently, angiotensin II (ANG II) chronic treatment, which induces hypertension, was shown to generate nitrosative stress in addition to oxidative stress. We hypothesized that S-nitrosation of sGC occurs in ANG II-induced hypertension, thereby leading to desensitization of sGC to NO hence vascular dysfunction. As expected, ANG II infusion increases blood pressure, aorta remodeling, and protein S-nitrosation. Intravital microscopy indicated that cremaster arterioles are resistant to NO-induced vasodilation in vivo in anesthetized ANG II-treated rats. Concomitantly, NO-induced cGMP production decreases, which correlated with S-nitrosation of sGC in hypertensive rats. This study suggests that S-nitrosation of sGC by ANG II contributes to vascular dysfunction. This was confirmed in vitro by using A7r5 smooth muscle cells infected with adenoviruses expressing sGC or cysteine mutants: ANG II decreases NO-stimulated activity in the wild-type but not in one mutant, C516A. This result indicates that cysteine 516 of sGC mediates ANG II-induced desensitization to NO in cells.


Asunto(s)
Angiotensina II , Guanilato Ciclasa/metabolismo , Hipertensión/inducido químicamente , Músculo Liso Vascular/enzimología , Óxido Nítrico/metabolismo , Estrés Oxidativo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Arteriolas/enzimología , Arteriolas/fisiopatología , Presión Sanguínea , Línea Celular , GMP Cíclico/metabolismo , Cisteína , Modelos Animales de Enfermedad , Activación Enzimática , Guanilato Ciclasa/genética , Hipertensión/enzimología , Hipertensión/fisiopatología , Masculino , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiopatología , Mutación , Miocitos del Músculo Liso/enzimología , Donantes de Óxido Nítrico/farmacología , Nitrosación , Estrés Oxidativo/efectos de los fármacos , Procesamiento Proteico-Postraduccional , Ratas , Ratas Sprague-Dawley , Receptores Citoplasmáticos y Nucleares/genética , Transducción de Señal , Guanilil Ciclasa Soluble , Factores de Tiempo , Transfección , Resistencia Vascular , Vasodilatación
16.
Proc Natl Acad Sci U S A ; 106(16): 6849-53, 2009 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-19342481

RESUMEN

The molecular mechanisms of endothelial nitric oxide synthase (eNOS) regulation of microvascular permeability remain unresolved. Agonist-induced internalization may have a role in this process. We demonstrate here that internalization of eNOS is required to deliver NO to subcellular locations to increase endothelial monolayer permeability to macromolecules. Using dominant-negative mutants of dynamin-2 (dyn2K44A) and caveolin-1 (cav1Y14F), we show that anchoring eNOS-containing caveolae to plasma membrane inhibits hyperpermeability induced by platelet-activating factor (PAF), VEGF in ECV-CD8eNOSGFP (ECV-304 transfected cells) and postcapillary venular endothelial cells (CVEC). We also observed that anchoring caveolar eNOS to the plasma membrane uncouples eNOS phosphorylation at Ser-1177 from NO production. This dissociation occurred in a mutant- and cell-dependent way. PAF induced Ser-1177-eNOS phosphorylation in ECV-CD8eNOSGFP and CVEC transfected with dyn2K44A, but it dephosphorylated eNOS at Ser-1177 in CVEC transfected with cav1Y14F. Interestingly, dyn2K44A eliminated NO production, whereas cav1Y14F caused reduction in NO production in CVEC. NO production by cav1Y14F-transfected CVEC occurred in caveolae bound to the plasma membrane, and was ineffective in causing an increase in permeability. Our study demonstrates that eNOS internalization is required for agonist-induced hyperpermeability, and suggests that a mechanism by which eNOS is activated by phosphorylation at the plasma membrane and its endocytosis is required to deliver NO to subcellular targets to cause hyperpermeability.


Asunto(s)
Permeabilidad Capilar/efectos de los fármacos , Endocitosis/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Factor de Activación Plaquetaria/farmacología , Animales , Bovinos , Caveolas/efectos de los fármacos , Caveolas/metabolismo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Activación Enzimática/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología , Factor A de Crecimiento Endotelial Vascular/farmacología
17.
Cell Rep ; 36(12): 109720, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34551296

RESUMEN

Pathological hyperphosphorylation and aggregation of tau (pTau) and neuroinflammation, driven by interleukin-1ß (IL-1ß), are the major hallmarks of tauopathies. Here, we show that pTau primes and activates IL-1ß. First, RNA-sequence analysis suggests paired-helical filaments (PHFs) from human tauopathy brain primes nuclear factor κB (NF-κB), chemokine, and IL-1ß signaling clusters in human primary microglia. Treating microglia with pTau-containing neuronal media, exosomes, or PHFs causes IL-1ß activation, which is NLRP3, ASC, and caspase-1 dependent. Suppression of pTau or ASC reduces tau pathology and inflammasome activation in rTg4510 and hTau mice, respectively. Although the deletion of MyD88 prevents both IL-1ß expression and activation in the hTau mouse model of tauopathy, ASC deficiency in myeloid cells reduces pTau-induced IL-1ß activation and improves cognitive function in hTau mice. Finally, pTau burden co-exists with elevated IL-1ß and ASC in autopsy brains of human tauopathies. Together, our results suggest pTau activates IL-1ß via MyD88- and NLRP3-ASC-dependent pathways in myeloid cells, including microglia.


Asunto(s)
Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Transducción de Señal , Tauopatías/patología , Proteínas tau/metabolismo , Animales , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Caspasa 1/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Doxorrubicina/farmacología , Humanos , Interleucina-1beta/genética , Ratones , Ratones Endogámicos C57BL , Microglía/citología , Microglía/metabolismo , Células Mieloides/citología , Células Mieloides/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Tauopatías/metabolismo , Proteínas tau/genética
18.
Microcirculation ; 17(2): 128-36, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20163539

RESUMEN

OBJECTIVE: To test the hypothesis that rapamycin inhibits induced microvascular hyperpermeability directly in vivo. METHODS: Male golden Syrian hamsters (80-120 g) were treated with either rapamycin (at 0.1, 0.5, 2, and 10 mg/kg i.p.) or vehicle at 24 hours and at 1 hour prior to preparation of the cheek pouch. Caveolin-1 scaffolding (1 mg/kg; positive inhibitory control) was injected i.p. 24 hours prior to the experiment. 10(-8) M vascular endothelial growth factor (VEGF) or 10(-7) M platelet-activating factor (PAF) were topically applied to the cheek pouch. Microvascular permeability and arteriolar diameter were assessed using integrated optical intensity (IOI) and vascular wall imaging, respectively. RESULTS: Rapamycin at 0.1 and 0.5 mg/kg significantly reduced VEGF-stimulated mean IOI from 63.0 +/- 4.2 to 9.7 +/- 5.0 (85% reduction, P < 0.001) and 3.6 +/- 2.7 (95% reduction, P < 0.001), respectively. Rapamycin at 2 mg/kg also lowered VEGF-stimulated hyperpermeability (40% reduction, P < 0.05). However, 10 mg/kg rapamycin increased VEGF-induced microvascular hyperpermeability. Rapamycin at 0.5 mg/kg attenuated VEGF-induced vasodilation and PAF-induced hyperpermeability, but did not inhibit PAF-induced vasoconstriction. CONCLUSIONS: At therapeutically relevant concentrations, rapamycin inhibits VEGF- and PAF-induced microvascular permeability. This inhibition is (i) a direct effect on the endothelial barrier, and (ii) independent of arteriolar vasodilation. Rapamycin at 10 mg/kg stimulates effectors that increase microvascular permeability.


Asunto(s)
Permeabilidad Capilar/efectos de los fármacos , Microcirculación/efectos de los fármacos , Sirolimus/farmacología , Factor A de Crecimiento Endotelial Vascular/farmacología , Animales , Arteriolas/efectos de los fármacos , Arteriolas/fisiología , Velocidad del Flujo Sanguíneo/efectos de los fármacos , Mejilla , Cricetinae , Masculino , Mesocricetus , Microcirculación/fisiología , Mucosa Bucal/irrigación sanguínea , Mucosa Bucal/efectos de los fármacos , Factor de Activación Plaquetaria/antagonistas & inhibidores , Factor de Activación Plaquetaria/farmacología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Vasodilatación/efectos de los fármacos
19.
Circ Res ; 103(6): 606-14, 2008 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-18669924

RESUMEN

Nitrates such as nitroglycerin (GTN) and nitric oxide donors such as S-nitrosothiols are clinically vasoactive through stimulation of soluble guanylyl cyclase (sGC), which produces the second messenger cGMP. Development of nitrate tolerance, after exposure to GTN for several hours, is a major drawback to a widely used cardiovascular therapy. We recently showed that exposure to nitric oxide and to S-nitrosothiols causes S-nitrosylation of sGC, which directly desensitizes sGC to stimulation by nitric oxide. We tested the hypothesis that desensitization of sGC by S-nitrosylation is a mechanism of nitrate tolerance. Our results established that vascular tolerance to nitrates can be recapitulated in vivo by S-nitrosylation through exposure to cell membrane-permeable S-nitrosothiols and that sGC is S-nitrosylated and desensitized in the tolerant, treated tissues. We next determined that (1) GTN treatment of primary aortic smooth muscle cells induces S-nitrosylation of sGC and its desensitization as a function of GTN concentration; (2) S-nitrosylation and desensitization are prevented by treatment with N-acetyl-cysteine, a precursor of glutathione, used clinically to prevent development of nitrate tolerance; and (3) S-nitrosylation and desensitization are reversed by cessation of GTN treatment. Finally, we demonstrated that in vivo development of nitrate tolerance and crosstolerance by 3-day chronic GTN treatment correlates with S-nitrosylation and desensitization of sGC in tolerant tissues. These results suggest that in vivo nitrate tolerance is mediated, in part, by desensitization of sGC through GTN-dependent S-nitrosylation.


Asunto(s)
Tolerancia a Medicamentos/fisiología , Guanilato Ciclasa/metabolismo , Nitratos/metabolismo , Nitroglicerina/farmacología , Receptores Citoplasmáticos y Nucleares/metabolismo , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología , Animales , Arteriolas/efectos de los fármacos , Arteriolas/fisiología , Cricetinae , Cisteína/análogos & derivados , Cisteína/farmacología , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Guanilato Ciclasa/genética , Mucosa Bucal/irrigación sanguínea , Mucosa Bucal/efectos de los fármacos , Mucosa Bucal/enzimología , Nitratos/fisiología , Receptores Citoplasmáticos y Nucleares/genética , S-Nitrosotioles/farmacología , Guanilil Ciclasa Soluble
20.
Front Immunol ; 11: 655, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457735

RESUMEN

Snake envenoming is a globally neglected public health problem. Antivenoms produced using animal hyperimmune plasma remain the standard therapy for snakebites. Although effective against systemic effects, conventional antivenoms have limited efficacy against local tissue damage. In addition, potential hypersensitivity reactions, high costs for animal maintenance, and difficulties in obtaining batch-to-batch homogeneity are some of the factors that have motivated the search for innovative and improved therapeutic products against such envenoming. In this study, we have developed a set of nanobodies (recombinant single-domain antigen-binding fragments from camelid heavy chain-only antibodies) against Bothrops atrox snake venom hemorrhagic and myotoxic components. An immune library was constructed after immunizing a Lama glama with whole venom of B. atrox, from which nanobodies were selected by phage display using partially purified hemorrhagic and myotoxic proteins. Biopanning selections retrieved 18 and eight different nanobodies against the hemorrhagic and the myotoxic proteins, respectively. In vivo assays in mice showed that five nanobodies inhibited the hemorrhagic activity of the proteins; three neutralized the hemorrhagic activity of whole B. atrox venom, while four nanobodies inhibited the myotoxic protein. A mixture of the anti-hemorrhagic and anti-myotoxic nanobodies neutralized the local tissue hemorrhage and myonecrosis induced by the whole venom, although the nanobody mixture failed to prevent the venom lethality. Nevertheless, our results demonstrate the efficacy and usefulness of these nanobodies to neutralize important pathologies of the venom, highlighting their potential as innovative therapeutic agents against envenoming by B. atrox, a viperid species causing many casualties in South America.


Asunto(s)
Antivenenos/uso terapéutico , Bothrops/metabolismo , Venenos de Crotálidos/química , Venenos de Crotálidos/inmunología , Hemorragia/tratamiento farmacológico , Factores Inmunológicos/uso terapéutico , Miotoxicidad/tratamiento farmacológico , Anticuerpos de Dominio Único/uso terapéutico , Mordeduras de Serpientes/tratamiento farmacológico , Animales , Camélidos del Nuevo Mundo/inmunología , Inmunización/métodos , Masculino , Ratones , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA