Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Neurol ; 22(1): 53, 2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35151251

RESUMEN

BACKGROUND: VPS13D is a large ubiquitin-binding protein playing an essential role in mitophagy by regulating mitochondrial fission. Recently, VPS13D biallelic pathogenic variants have been reported in patients displaying variable neurological phenotypes, with an autosomic recessive inheritance. The objectives of the study were to determine the genetic etiology of a patient with early onset sporadic progressive spastic ataxia, and to investigate the pathogenicity of VPS13D variants through functional studies on patient's skin fibroblasts. CASE PRESENTATION: We report the case of a 51-year-old patient with spastic ataxia, with an acute onset of the disease at age 7. Walking difficulties slowly worsened over time, with the use of a wheelchair since age 26. We have used trio-based whole-exome sequencing (WES) to identify genes associated with spastic ataxia. The impact of the identified variants on mitochondrial function was assessed in patient's fibroblasts by imaging mitochondrial network and measuring level of individual OXPHOS complex subunits. Compound heterozygous variants were identified in VPS13D: c.946C > T, p.Arg316* and c.12416C > T, p.(Ala4139Val). Primary fibroblasts obtained from this patient revealed an altered mitochondrial morphology, and a decrease in levels of proteins from complex I, III and IV. CONCLUSIONS: Our findings confirmed implication of VPS13D in spastic ataxia and provided further support for mitochondrial defects in patient's skin fibroblasts with VPS13D variants. This report of long-term follow up showed a slowly progressive course of the spastic paraplegia with cerebellar features. Furthermore, the performed functional studies could be used as biomarker helping diagnosis of VPS13D-related neurological disorders when molecular results are uneasy to interpret.


Asunto(s)
Atrofia Óptica , Paraplejía Espástica Hereditaria , Ataxias Espinocerebelosas , Adulto , Niño , Humanos , Discapacidad Intelectual , Persona de Mediana Edad , Espasticidad Muscular , Mutación , Linaje , Fenotipo , Proteínas , Paraplejía Espástica Hereditaria/genética , Ataxias Espinocerebelosas/genética , Secuenciación del Exoma
2.
Hum Mutat ; 39(1): 140-151, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29034544

RESUMEN

Hereditary spastic paraplegia (HSP) is an inherited disorder of the central nervous system mainly characterized by gradual spasticity and weakness of the lower limbs. SPG56 is a rare autosomal recessive early onset complicated form of HSP caused by mutations in CYP2U1. The CYP2U1 enzyme was shown to catalyze the hydroxylation of arachidonic acid. Here, we report two further SPG56 families carrying three novel CYP2U1 missense variants and the development of an in vitro biochemical assay to determine the pathogenicity of missense variants of uncertain clinical significance. We compared spectroscopic, enzymatic, and structural (from a 3D model) characteristics of the over expressed wild-type or mutated CYP2U1 in HEK293T cells. Our findings demonstrated that most of the tested missense variants in CYP2U1 were functionally inactive because of a loss of proper heme binding or destabilization of the protein structure. We also showed that functional data do not necessarily correlate with in silico predictions of variants pathogenicity, using different bioinformatic phenotype prediction tools. Our results therefore highlight the importance to use biological tools, such as the enzymatic test set up in this study, to evaluate the effects of newly identified variants in clinical settings.


Asunto(s)
Familia 2 del Citocromo P450/genética , Familia 2 del Citocromo P450/metabolismo , Mutación Missense , Paraplejía Espástica Hereditaria/enzimología , Paraplejía Espástica Hereditaria/genética , Alelos , Sustitución de Aminoácidos , Familia 2 del Citocromo P450/química , Análisis Mutacional de ADN , Activación Enzimática , Expresión Génica , Estudios de Asociación Genética , Células HEK293 , Humanos , Modelos Moleculares , Oxidación-Reducción , Fenotipo , Conformación Proteica , Paraplejía Espástica Hereditaria/diagnóstico
3.
PLoS Genet ; 10(9): e1004580, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25188300

RESUMEN

SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability-more than 1 in 50-warrant its consideration for mutation screening in clinical practice.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Trastornos del Conocimiento/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Estudios de Casos y Controles , Niño , Cognición/fisiología , Variaciones en el Número de Copia de ADN/genética , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Neuronas/fisiología , Sinapsis/genética
4.
Ann Neurol ; 78(6): 871-86, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26288984

RESUMEN

OBJECTIVE: Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by mutations in the SACS gene. SACS encodes sacsin, a protein whose function remains unknown, despite the description of numerous protein domains and the recent focus on its potential role in the regulation of mitochondrial physiology. This study aimed to identify new mutations in a large population of ataxic patients and to functionally analyze their cellular effects in the mitochondrial compartment. METHODS: A total of 321 index patients with spastic ataxia selected from the SPATAX network were analyzed by direct sequencing of the SACS gene, and 156 patients from the ATAXIC project presenting with congenital ataxia were investigated either by targeted or whole exome sequencing. For functional analyses, primary cultures of fibroblasts were obtained from 11 patients carrying either mono- or biallelic variants, including 1 case harboring a large deletion encompassing the entire SACS gene. RESULTS: We identified biallelic SACS variants in 33 patients from SPATAX, and in 5 nonprogressive ataxia patients from ATAXIC. Moreover, a drastic and recurrent alteration of the mitochondrial network was observed in 10 of the 11 patients tested. INTERPRETATION: Our results permit extension of the clinical and mutational spectrum of ARSACS patients. Moreover, we suggest that the observed mitochondrial network anomalies could be used as a trait biomarker for the diagnosis of ARSACS when SACS molecular results are difficult to interpret (ie, missense variants and heterozygous truncating variant). Based on our findings, we propose new diagnostic definitions for ARSACS using clinical, genetic, and cellular criteria.


Asunto(s)
Biomarcadores , Proteínas de Choque Térmico/fisiología , Mitocondrias , Espasticidad Muscular/diagnóstico , Ataxias Espinocerebelosas/congénito , Adolescente , Adulto , Técnicas de Cultivo de Célula , Niño , Estudios de Cohortes , Femenino , Fibroblastos , Proteínas de Choque Térmico/genética , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/fisiología , Espasticidad Muscular/genética , Espasticidad Muscular/patología , Espasticidad Muscular/fisiopatología , Mutación , Ataxias Espinocerebelosas/diagnóstico , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Ataxias Espinocerebelosas/fisiopatología , Adulto Joven
5.
Brain ; 138(Pt 8): 2191-205, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26026163

RESUMEN

Hereditary spastic paraplegias are heterogeneous neurological disorders characterized by a pyramidal syndrome with symptoms predominantly affecting the lower limbs. Some limited pyramidal involvement also occurs in patients with an autosomal recessive neurocutaneous syndrome due to ALDH18A1 mutations. ALDH18A1 encodes delta-1-pyrroline-5-carboxylate synthase (P5CS), an enzyme that catalyses the first and common step of proline and ornithine biosynthesis from glutamate. Through exome sequencing and candidate gene screening, we report two families with autosomal recessive transmission of ALDH18A1 mutations, and predominant complex hereditary spastic paraplegia with marked cognitive impairment, without any cutaneous abnormality. More interestingly, we also identified monoallelic ALDH18A1 mutations segregating in three independent families with autosomal dominant pure or complex hereditary spastic paraplegia, as well as in two sporadic patients. Low levels of plasma ornithine, citrulline, arginine and proline in four individuals from two families suggested P5CS deficiency. Glutamine loading tests in two fibroblast cultures from two related affected subjects confirmed a metabolic block at the level of P5CS in vivo. Besides expanding the clinical spectrum of ALDH18A1-related pathology, we describe mutations segregating in an autosomal dominant pattern. The latter are associated with a potential trait biomarker; we therefore suggest including amino acid chromatography in the clinico-genetic work-up of hereditary spastic paraplegia, particularly in dominant cases, as the associated phenotype is not distinct from other causative genes.


Asunto(s)
Aldehído Deshidrogenasa/genética , Mutación/genética , Ornitina/genética , Ornitina/metabolismo , Paraplejía Espástica Hereditaria/genética , Adolescente , Adulto , Arginina/metabolismo , Femenino , Ácido Glutámico/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/metabolismo , Adulto Joven
6.
Nat Genet ; 39(1): 25-7, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17173049

RESUMEN

SHANK3 (also known as ProSAP2) regulates the structural organization of dendritic spines and is a binding partner of neuroligins; genes encoding neuroligins are mutated in autism and Asperger syndrome. Here, we report that a mutation of a single copy of SHANK3 on chromosome 22q13 can result in language and/or social communication disorders. These mutations concern only a small number of individuals, but they shed light on one gene dosage-sensitive synaptic pathway that is involved in autism spectrum disorders.


Asunto(s)
Trastorno Autístico/genética , Proteínas Portadoras/genética , Secuencia de Bases , Análisis Mutacional de ADN , Femenino , Pruebas Genéticas , Humanos , Hibridación Fluorescente in Situ , Masculino , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso , Linaje
7.
Am J Hum Genet ; 91(6): 1051-64, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23176821

RESUMEN

Hereditary spastic paraplegia (HSP) is considered one of the most heterogeneous groups of neurological disorders, both clinically and genetically. The disease comprises pure and complex forms that clinically include slowly progressive lower-limb spasticity resulting from degeneration of the corticospinal tract. At least 48 loci accounting for these diseases have been mapped to date, and mutations have been identified in 22 genes, most of which play a role in intracellular trafficking. Here, we identified mutations in two functionally related genes (DDHD1 and CYP2U1) in individuals with autosomal-recessive forms of HSP by using either the classical positional cloning or a combination of whole-genome linkage mapping and next-generation sequencing. Interestingly, three subjects with CYP2U1 mutations presented with a thin corpus callosum, white-matter abnormalities, and/or calcification of the basal ganglia. These genes code for two enzymes involved in fatty-acid metabolism, and we have demonstrated in human cells that the HSP pathophysiology includes alteration of mitochondrial architecture and bioenergetics with increased oxidative stress. Our combined results focus attention on lipid metabolism as a critical HSP pathway with a deleterious impact on mitochondrial bioenergetic function.


Asunto(s)
Ácidos Grasos/metabolismo , Mitocondrias/enzimología , Mitocondrias/genética , Paraplejía Espástica Hereditaria/enzimología , Paraplejía Espástica Hereditaria/genética , Adolescente , Adulto , Niño , Preescolar , Mapeo Cromosómico , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Familia 2 del Citocromo P450 , Femenino , Perfilación de la Expresión Génica , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Fenotipo , Fosfolipasas/genética , Fosfolipasas/metabolismo , Transporte de Proteínas , Adulto Joven
8.
J Neurosci ; 30(29): 9738-52, 2010 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-20660256

RESUMEN

Scribble (Scrib) is a key regulator of apicobasal polarity, presynaptic architecture, and short-term synaptic plasticity in Drosophila. In mammals, its homolog Scrib1 has been implicated in cancer, neural tube closure, and planar cell polarity (PCP), but its specific role in the developing and adult nervous system is unclear. Here, we used the circletail mutant, a mouse model for PCP defects, to show that Scrib1 is located in spines where it influences actin cytoskeleton and spine morphing. In the hippocampus of these mutants, we observed an increased synapse pruning associated with an increased number of enlarged spines and postsynaptic density, and a decreased number of perforated synapses. This phenotype was associated with a mislocalization of the signaling pathway downstream of Scrib1, leading to an overall activation of Rac1 and defects in actin dynamic reorganization. Finally, Scrib1-deficient mice exhibit enhanced learning and memory abilities and impaired social behavior, two features relevant to autistic spectrum disorders. Our data identify Scrib1 as a crucial regulator of brain development and spine morphology, and suggest that Scrib1(crc/+) mice might be a model for studying synaptic dysfunction and human psychiatric disorders.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Hipocampo/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Aprendizaje/fisiología , Memoria/fisiología , Plasticidad Neuronal/genética , Conducta Social , Animales , Encéfalo/embriología , Células COS , Células Cultivadas , Chlorocebus aethiops , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Femenino , Hipocampo/embriología , Masculino , Ratones , Modelos Animales , Actividad Motora/fisiología , Mutación , Técnicas de Placa-Clamp , Sinapsis/fisiología , Transmisión Sináptica/genética
9.
BMC Med Genet ; 10: 7, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19166581

RESUMEN

BACKGROUND: Autism spectrum disorders (ASD) are severe neurodevelopmental disorders with the male:female ratio of 4:1, implying the contribution of X chromosome genetic factors to the susceptibility of ASD. The ribosomal protein L10 (RPL10) gene, located on chromosome Xq28, codes for a key protein in assembling large ribosomal subunit and protein synthesis. Two non-synonymous mutations of RPL10, L206M and H213Q, were identified in four boys with ASD. Moreover, functional studies of mutant RPL10 in yeast exhibited aberrant ribosomal profiles. These results provided a novel aspect of disease mechanisms for autism--aberrant processes of ribosome biosynthesis and translation. To confirm these initial findings, we re-sequenced RPL10 exons and quantified mRNA transcript level of RPL10 in our samples. METHODS: 141 individuals with ASD were recruited in this study. All RPL10 exons and flanking junctions were sequenced. Furthermore, mRNA transcript level of RPL10 was quantified in B lymphoblastoid cell lines (BLCL) of 48 patients and 27 controls using the method of SYBR Green quantitative PCR. Two sets of primer pairs were used to quantify the mRNA expression level of RPL10: RPL10-A and RPL10-B. RESULTS: No non-synonymous mutations were detected in our cohort. Male controls showed similar transcript level of RPL10 compared with female controls (RPL10-A, U = 81, P = 0.7; RPL10-B, U = 61.5, P = 0.2). We did not observe any significant difference in RPL10 transcript levels between cases and controls (RPL10-A, U = 531, P = 0.2; RPL10-B, U = 607.5, P = 0.7). CONCLUSION: Our results suggest that RPL10 has no major effect on the susceptibility to ASD.


Asunto(s)
Trastorno Autístico/genética , Mutación , Proteínas Ribosómicas/genética , Cromosomas Humanos X , Estudios de Cohortes , Exones , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína Ribosómica L10 , Análisis de Secuencia de ADN
10.
Am J Med Genet B Neuropsychiatr Genet ; 147B(6): 830-5, 2008 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-18361425

RESUMEN

Autism spectrum disorders (ASD) are complex genetic disorders more frequently observed in males. Skewed X chromosome inactivation (XCI) is observed in heterozygous females carrying gene mutations involved in several X-linked syndromes. In this study, we aimed to estimate the role of X-linked genes in ASD susceptibility by ascertaining the XCI pattern in a sample of 543 informative mothers of children with ASD and in a sample of 163 affected girls. The XCI pattern was also determined in two control groups (144 adult females and 40 young females) with a similar age distribution to the mothers sample and affected girls sample, respectively. We observed no significant excess of skewed XCI in families with ASD. Interestingly, two mothers and one girl carrying known mutations in X-linked genes (NLGN3, ATRX, MECP2) showed highly skewed XCI, suggesting that ascertainment of XCI could reveal families with X-linked mutations. Linkage analysis was carried out in the subgroup of multiplex families with skewed XCI (> or = 80:20) and a modest increased allele sharing was obtained in the Xq27-Xq28 region, with a peak Z-score of 1.75 close to rs719489. In summary, our results suggest that there is no major X-linked gene subject to XCI and expressed in blood cells conferring susceptibility to ASD. However, the possibility that rare mutations in X-linked genes could contribute to ASD cannot be excluded. We propose that the XCI profile could be a useful criteria to prioritize families for mutation screening of X-linked candidate genes.


Asunto(s)
Trastorno Autístico/genética , Cromosomas Humanos X , Predisposición Genética a la Enfermedad , Inactivación del Cromosoma X/fisiología , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Preescolar , Cromosomas Humanos X/genética , Estudios de Cohortes , Análisis Mutacional de ADN , Femenino , Humanos , Persona de Mediana Edad , Madres
11.
Biol Psychiatry ; 60(2): 202-3, 2006 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16581035

RESUMEN

BACKGROUND: It was recently reported that a rare functional variant, R441H, in the human tryptophan hydroxylase-2 gene (hTPH2) could represent an important risk factor for unipolar major depression (UP) since it was originally found in 10% of UP patients (vs. 1.4% in control subjects). METHODS: We explored the occurrence of this variation in patients with affective disorders (n = 646), autism spectrum disorders (n = 224), and obsessive-compulsive disorder (OCD) (n = 201); in healthy volunteers with no psychiatric disorders (n = 246); and in an ethnic panel of control individuals from North Africa, Sub-Saharan Africa, India, China, and Sweden (n = 277). RESULTS: Surprisingly, we did not observe the R441H variant in any of the individuals screened (3188 independent chromosomes). CONCLUSIONS: Our results do not confirm the role of the R441H mutation of the hTPH2 gene in the susceptibility to UP. The absence of the variant from a large cohort of psychiatric patients and control subjects suggests that the findings reported in the original study could be due to a genotyping error or to stratification of the initial population reported. Additional data by other groups should contribute to the clarification of the discrepancy between our results and those previous published.


Asunto(s)
Trastornos Mentales/genética , Mutación/genética , Triptófano Hidroxilasa/genética , Adulto , Alelos , Cromosomas/genética , Estudios de Cohortes , Femenino , Frecuencia de los Genes , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética
12.
Cell Rep ; 9(2): 712-27, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25310985

RESUMEN

The appropriate trafficking of glutamate receptors to synapses is crucial for basic synaptic function and synaptic plasticity. It is now accepted that NMDA receptors (NMDARs) internalize and are recycled at the plasma membrane but also exchange between synaptic and extrasynaptic pools; these NMDAR properties are also key to governing synaptic plasticity. Scribble1 is a large PDZ protein required for synaptogenesis and synaptic plasticity. Herein, we show that the level of Scribble1 is regulated in an activity-dependent manner and that Scribble1 controls the number of NMDARs at the plasma membrane. Notably, Scribble1 prevents GluN2A subunits from undergoing lysosomal trafficking and degradation by increasing their recycling to the plasma membrane following NMDAR activation. Finally, we show that a specific YxxR motif on Scribble1 controls these mechanisms through a direct interaction with AP2. Altogether, our findings define a molecular mechanism to control the levels of synaptic NMDARs via Scribble1 complex signaling.


Asunto(s)
Complejo 2 de Proteína Adaptadora/metabolismo , Endosomas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células Cultivadas , Datos de Secuencia Molecular , Neuronas/metabolismo , Unión Proteica , Transporte de Proteínas , Proteolisis , Ratas , Ratas Sprague-Dawley , Proteínas Supresoras de Tumor/química
14.
Am J Med Genet B Neuropsychiatr Genet ; 141B(1): 67-70, 2006 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-16331680

RESUMEN

Synaptogenesis, the formation of functional synapses, is a crucial step for the development of the central nervous system. Among the genes involved in this process are cell adhesion molecules, such as protocadherins and neuroligins, which are essential factors for the identification of the appropriate partner cell and the formation of synapses. In this work, we studied the expression and the genetic variability of two closely related members of the protocadherin family PCDH11X/Y, located on the X and the Y chromosome, respectively. PCDH11Y is one of the rare genes specific to the hominoid lineage, being absent in other primates. Expression analysis indicated that transcripts of the PCDH11X/Y genes are mainly detected in the cortex of the human brain. Mutation screening of 30 individuals with autism identified two PCDH11Y polymorphic amino acid changes, F885V and K980N. These variations are in complete association, appeared during human evolution approximately 40,000 years ago and represent informative polymorphisms to study Y chromosome variability in populations. We studied the frequency of these variants in males with autism spectrum disorders (n = 110), attention deficit hyperactivity disorder (ADHD; n = 61), bipolar disorder (n = 61), obsessive-compulsive disorder (n = 51), or schizophrenia (n = 61) and observed no significant differences when compared to ethnically-matched control populations. These findings do not support the role of PCDH11Y, or more generally of a frequent specific Y chromosome, in the susceptibility to these neuropsychiatric disorders.


Asunto(s)
Cadherinas/genética , Predisposición Genética a la Enfermedad/genética , Trastornos Mentales/genética , Mutación , Secuencia de Aminoácidos , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno Autístico/genética , Trastorno Bipolar/genética , Encéfalo/metabolismo , Análisis Mutacional de ADN , Francia , Expresión Génica , Frecuencia de los Genes , Haplotipos , Humanos , Masculino , Datos de Secuencia Molecular , Mutación Missense , Polimorfismo Genético , Protocadherinas , ARN/genética , ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Suecia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA