Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Anal Chem ; 95(2): 587-593, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36574263

RESUMEN

Microfluidic diffusional sizing (MDS) is a recent and powerful method for determining the hydrodynamic sizes and interactions of biomolecules and nanoparticles. A major benefit of MDS is that it can report the size of a fluorescently labeled target even in mixtures with complex, unpurified samples. However, a limitation of MDS is that the target itself has to be purified and covalently labeled with a fluorescent dye. Such covalent labeling is not suitable for crude extracts such as native nanodiscs directly obtained from cellular membranes. In this study, we introduce fluorescent universal lipid labeling for MDS (FULL-MDS) as a sparse, noncovalent labeling method for determining particle size. We first demonstrate that the inexpensive and well-characterized fluorophore, Nile blue, spontaneously partitions into lipid nanoparticles without disrupting their structure. We then highlight the key advantage of FULL-MDS by showing that it yields robust size information on lipid nanoparticles in crude cell extracts that are not amenable to other sizing methods. Furthermore, even for synthetic nanodiscs, FULL-MDS is faster, cheaper, and simpler than existing labeling schemes.


Asunto(s)
Colorantes Fluorescentes , Microfluídica , Microfluídica/métodos , Membrana Celular , Colorantes Fluorescentes/química , Lípidos
2.
Small ; 17(49): e2103603, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34674382

RESUMEN

When membrane proteins are removed from their natural environment, the quality of the membrane-solubilizing agent used is critical for preserving their native structures and functions. Nanodiscs that retain a lipid-bilayer core around membrane proteins have attracted great attention because they offer a much more native-like environment than detergent micelles. Here, two small-molecule amphiphiles with diglucose headgroups and either a hydrocarbon or a fluorocarbon hydrophobic chain are shown to directly assemble lipids and membrane proteins to form native nanodiscs rather than mixed micelles. Self-assembly of nanodiscs of increasing complexity from both defined, artificial vesicles as well as complex, cellular membranes is demonstrated. A detailed investigation of bilayer integrity and membrane-protein activity in these nanodiscs reveals gentle effects on the encapsulated bilayer core. The fluorinated amphiphile appears particularly promising because its lipophobicity results in gentle, non-perturbing interactions with the nanoscale lipid bilayer. A sequential model of nanodisc self-assembly is proposed that proceeds through perforation of the original membrane followed by saturation and complete solubilization of the bilayer. On this basis, pseudophase diagrams are established for mixtures of lipids and nanodisc-forming diglucoside amphiphiles, and the latter are used for the extraction of a broad range of membrane proteins from cellular membranes.


Asunto(s)
Membrana Dobles de Lípidos , Nanoestructuras , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana , Micelas
3.
Langmuir ; 37(6): 2111-2122, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33539092

RESUMEN

Two new surfactants, F5OM and F5DM, were designed as partially fluorinated analogues of n-dodecyl-ß-D-maltoside (DDM). The micellization properties and the morphologies of the aggregates formed by the two surfactants in water and phosphate buffer were evaluated by NMR spectroscopy, surface tension measurement, isothermal titration calorimetry, dynamic light scattering, small-angle X-ray scattering, and analytical ultracentrifugation. As expected, the critical micellar concentration (cmc) was found to decrease with chain length of the fluorinated tail from 2.1-2.5 mM for F5OM to 0.3-0.5 mM for F5DM, and micellization was mainly entropy-driven at 25 °C. Close to their respective cmc, the micelle sizes were similar for both surfactants, that is, 7 and 13 nm for F5OM and F5DM, respectively, and both increased with concentration forming 4 nm diameter rods with maximum dimensions of 50 and 70 nm, respectively, at a surfactant concentration of ∼30 mM. The surfactants were found to readily solubilize lipid vesicles and extract membrane proteins directly from Escherichia coli membranes. They were found more efficient than the commercial fluorinated detergent F6H2OM over a broad range of concentrations (1-10 mM) and even better than DDM at low concentrations (1-5 mM). When transferred into the two new surfactants, the thermal stability of the proteins bacteriorhodopsin (bR) and FhuA was higher than in the presence of their solubilization detergents and similar to that in DDM; furthermore, bR was stable over several months. The membrane enzymes SpNOX and BmrA were not as active as in DDM micelles but similarly active as in F6OM. Together, these findings indicate both extracting and stabilizing properties of the new maltose-based fluorinated surfactants, making them promising tools in MP applications.


Asunto(s)
Maltosa , Tensoactivos , Proteínas de la Membrana , Micelas , Tensión Superficial
4.
J Org Chem ; 86(21): 14672-14683, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34609857

RESUMEN

Four double-tailed hybrid fluorocarbon-hydrocarbon (F-H) surfactants with a poly(ethylene glycol) (PEG) polar headgroup were synthesized. The hydrophobic scaffold consists of an amino acid core, onto which were grafted both fluorocarbon and hydrocarbon chains of different lengths. The PEG polar head was connected to the hydrophobic scaffold through a copper(I)-mediated click reaction. The four derivatives exhibit aqueous solubility >100 g/L and self-assemble into micellar aggregates with micromolar critical micellar concentration (CMC) values, as demonstrated by isothermal titration calorimetry (ITC), surface tension (ST) measurements, and steady-state fluorescence spectroscopy. The CMC value decreased by a factor of ∼6 for each additional pair of CH2 groups, whereas a decrease by a factor of ∼2.5 was observed when the size of the PEG polar head was reduced from 2000 to 750 g/mol. Dynamic light scattering (DLS) showed unimodal micelle populations with hydrodynamic diameters of 10-15 nm, in agreement with results obtained from size-exclusion chromatography (SEC). The aggregation number increased with the hydrocarbon chain length but decreased with increasing PEG chain lengths. The combination in one molecular design of both low CMC and high water solubility makes these new surfactants promising systems for novel drug-delivery systems.


Asunto(s)
Fluorocarburos , Tensoactivos , Hidrocarburos , Interacciones Hidrofóbicas e Hidrofílicas , Micelas
5.
Methods ; 180: 19-26, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32061675

RESUMEN

Membrane proteins (MPs) are important drug discovery targets for a wide range of diseases. Conventional detergents such as n-Dodecyl ß-D-maltoside have been used largely and efficiently to solubilize MPs with varying degrees of success concerning MPs functionality and stability. Fluorinated surfactants (FSs) have shown a great potential for the stabilization of various MPs. However, so far only a limited number of reports have demonstrated the ability of FSs to solubilize MPs from biological membranes. We report herein the use of a fluorinated lactobionamide-based detergent named FLAC6 for functional and structural stabilization of membrane proteins. We first demonstrated that FLAC6 efficiently solubilized three membrane proteins i.e. the native adenosine receptor A2AR, a G protein-coupled receptor, and two native transporters AcrB and BmrA. The resulting affinity purified MPs were highly pure, homogenous and aggregates free. Furthermore, the functionality of each MP was well maintained. Finally, striking overstabilization features were observed. Indeed, the Tm of native A2AR, AcrB and BmrA could be improved by 7, ~9 and ~ 23 °C, respectively when FLAC6 was used instead of the reference detergent. This work illustrates that FLAC6 is an efficient tool to maintain structural and functional integrities of different MPs belonging to different classes, providing a new avenue for functional stabilization of highly druggable and challenging membrane proteins involved in unmet medical needs.


Asunto(s)
Detergentes/química , Disacáridos/química , Proteínas de la Membrana/química , Animales , Cromatografía en Gel , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Halogenación , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/genética , Receptores Purinérgicos P1/metabolismo , Células Sf9 , Solubilidad , Tensoactivos/química
6.
Methods ; 180: 69-78, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32505829

RESUMEN

We present herein the synthesis of biotin-functionalized polymers (BNAPols) that have been developed for the fixation of membrane proteins (MPs) onto surfaces. BNAPols were synthesized by free-radical polymerization of a tris(hydroxymethyl)acrylamidomethane (THAM)-derived amphiphilic monomer in the presence of a thiol-based transfer agent with an azido group. Then a Huisgen-cycloaddition reaction was performed with Biotin-(PEG)8-alkyne that resulted in formation of the biotinylated polymers. The designed structure of BNAPols was confirmed by NMR spectroscopy, and a HABA/avidin assay was used for estimating the percentage of biotin grafted on the polymer end chain. The colloidal characterization of these biotin-functionalized polymers was done using both dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) techniques. BNAPols were used to stabilize a model G protein-coupled receptor (GPCR), the human Growth Hormone Secretagogue Receptor (GHSR), out of its membrane environment. Subsequent immobilization of the BNAPols:GHSR complex onto a streptavidin-coated surface allowed screening of ligands based on their ability to bind the immobilized receptor. This opens the way to the use of biotinylated NAPols to immobilize functional, unmodified, membrane proteins, providing original sensor devices for multiple applications including innovative ligand screening assays.


Asunto(s)
Biotina/química , Polímeros/química , Polímeros/síntesis química , Receptores Acoplados a Proteínas G/química , Receptores de Ghrelina/química , Acrilatos/química , Biotinilación , Coloides/química , Dispersión Dinámica de Luz , Células HEK293 , Humanos , Espectroscopía de Resonancia Magnética , Metilaminas/química , Polimerizacion , Polímeros/análisis , Dispersión del Ángulo Pequeño , Estreptavidina/química , Compuestos de Sulfhidrilo/química , Difracción de Rayos X
7.
J Org Chem ; 85(9): 6073-6085, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32267700

RESUMEN

New derivatives of α-phenyl-N-tert-butyl nitrone (PBN) bearing a hydroxyl, an acetate, or an acetamide substituent on the N-tert-butyl moiety and para-substituted phenyl or naphthlyl moieties were synthesized. Their ability to trap hydroxymethyl radical was evaluated by electron paramagnetic resonance spectroscopy. The presence of two electron-withdrawing substituents on both sides of the nitronyl function improves the spin-trapping properties, with 4-HOOC-PBN-CH2OAc and 4-HOOC-PBN-CH2NHAc being ∼4× more reactive than PBN. The electrochemical properties of the derivatives were further investigated by cyclic voltammetry and showed that the redox potentials of the nitrones are largely influenced by the nature of the substituents both on the aromatic ring and on the N-tert-butyl function. The acetamide derivatives PBN-CH2NHAc, 4-AcNHCH2-PBN-CH2NHAc, and 4-MeO-PBN-CH2NHAc were the easiest to oxidize. A computational approach was used to rationalize the effect of functionalization on the free energies of nitrone reactivity with hydroxymethyl radical as well as on the electron affinity and ionization potential. Finally, the neuroprotection of the derivatives was evaluated in an in vitro model of cellular injury on cortical neurons. Five derivatives showed good protection at very low concentrations (0.1-10 µM), with PBN-CH2NHAc and 4-HOOC-PBN being the two most promising agents.

8.
Langmuir ; 35(12): 4287-4295, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30767533

RESUMEN

We report herein the design and synthesis of a novel series of alkyl glycoside detergents consisting of a nonionic polar headgroup that comprises two glucose moieties in a branched arrangement (DG), onto which octane-, decane-, and dodecanethiols were grafted leading to ODG, DDG, and DDDG detergents, respectively. Micellization in aqueous solution was studied by isothermal titration calorimetry, 1H NMR spectroscopy, and surface tensiometry. Critical micellar concentration values were found to decrease by a factor of ∼10 for each pair of methylene groups added to the alkyl chain, ranging from ∼0.05 to 9 mM for DDDG and ODG, respectively. Dynamic light scattering and analytical ultracentrifugation sedimentation velocity experiments were used to investigate the size and composition of the micellar aggregates, showing that the aggregation number significantly increased from ∼40 for ODG to ∼80 for DDDG. All new compounds were able to solubilize membrane proteins (MPs) from bacterial membranes, insect cells, as well as the Madin-Darby canine kidney cells. In particular, native human adenosine receptor (A2AR) and bacterial transporter (BmrA) were solubilized efficiently. Striking thermostability improvements of +13 and +8 °C were observed when ODG and DDG were, respectively, applied to wild-type and full-length A2AR. Taken together, this novel detergent series shows promising detergent potency for solubilization and stabilization of membrane proteins (MPs) and thus makes a valuable addition to the chemical toolbox available for extracting and handling these important but challenging MP targets.


Asunto(s)
Detergentes/química , Glucosa/química , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Hidrogenación , Tamaño de la Partícula , Estabilidad Proteica , Propiedades de Superficie
9.
J Org Chem ; 84(17): 10606-10614, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31414599

RESUMEN

Four hybrid double-chain surfactants with a maltose polar head were synthesized. The apolar domain consists of a hydrogenated chain, and a partially fluorinated chain made of a propyl hydrogenated spacer terminated by a perfluorinated core of various lengths. Their water solubility was found to be lower than 1 g/L irrespective of the length of both chains. The self-assembling properties of pure hybrids in water were studied by dynamic light scattering and transmission electron microscopy, which revealed the formation of two populations of aggregates with diameters of 8-50 nm and 80-300 nm. When mixed with the classical detergent n-dodecylmaltoside (DDM), the four hybrids were well soluble and formed small mixed micelles. DDM/hybrid mixtures were further evaluated for the extraction of the full-length, wild-type human GPCR adenosine receptor (A2AR), and the bacterial transporter AcrB. The solubilization of A2AR showed extraction efficiencies ranging from 40 to 70%, while that of AcrB reached 60-90%. Finally, three of the hybrids exhibited significant thermostabilization when present as additives. The derivative with a C12-hydrogenated chain and a C4F9-fluorinated chain emerged as the most potent additive exhibiting both good extraction yields of A2AR and AcrB and thermostabilization of A2AR by ∼7 °C.

10.
Methods ; 147: 84-94, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29857192

RESUMEN

Fluorinated surfactants have scarcely been explored for the direct extraction of proteins from membranes because fluorination is believed to abrogate detergency. However, we have recently shown that a commercially available fluorinated surfactant readily solubilizes lipid membranes, thereby suggesting that fluorination per se does not interfere with detergent activity. In this work, we developed new fluorinated surfactants that exhibit detergency in terms of both lipid-vesicle solubilization and membrane-protein extraction. The compounds made and tested contain two glucose moieties as polar headgroup, a hydrogenated thioether linker, and a perfluorinated alkyl tail with either 4, 6, or 8 carbon atoms. The physicochemical properties of the micelles formed by the three fluorinated surfactants were evaluated by NMR spectroscopy, surface tensiometry, isothermal titration calorimetry, dynamic light scattering, small-angle X-ray scattering, and analytical ultracentrifugation. At 25 °C, micellization was mainly entropy-driven, and the CMC values were found to decrease with chain length of the fluorinated tail, whereas the aggregation number increased with chain length. Remarkably, all three surfactants were found to solubilize lipid vesicles and extract a broad range of proteins from Escherichia coli membranes. These findings demonstrate, for the first time, that nonionic fluorinated surfactants could be further exploited for the direct extraction and solubilization of membrane proteins.


Asunto(s)
Detergentes/farmacología , Proteínas de la Membrana/aislamiento & purificación , Calorimetría , Halogenación , Proteínas de la Membrana/química , Micelas , Solubilidad
11.
Biochim Biophys Acta Biomembr ; 1859(12): 2495-2504, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28982534

RESUMEN

Free radical scavengers such as α-phenyl-N-tert-butylnitrone (PBN) have been widely used as protective agents in several biological models. We recently designed two PBN derivatives by adding a cholesterol moiety to the parent nitrone to increase its lipophilicity. In addition to the cholesterol, a sugar group was also grafted to enhance the hydrophilic properties at the same time. In the present work we report on the synthesis of a third derivative bearing only a cholesterol moiety and the physical chemical and antioxidant characterization of these three derivatives. We demonstrated they were able to form stable monolayers at the air/water interface and with the two derivatives bearing a sugar group, repulsive interactions with 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) were observed. We next investigated the interaction with DLPC on a liposome model. Fluorescence spectroscopy experiments showed the addition of a cholesterol moiety causes an ordering effect whereas the presence of the sugar group led to a disordering effect. The protective effect against lipid oxidation was then investigated using dynamic light scattering and the formation of conjugated dienes was quantified spectrophotometrically. Two oxidizing systems were tested, i.e. the AAPH-thermolysis which generates peroxyl radicals and the Fenton reagent which is responsible of the formation of hydroxyl radicals. Due to their membrane localization, the three cholesteryl-PBN derivatives are able to prevent lipid oxidation with the two types of radical inducers but with a different mode of action.


Asunto(s)
Óxidos N-Cíclicos/química , Depuradores de Radicales Libres/química , Liposomas/química , Óxidos de Nitrógeno/química , Amidinas/química , Colesterol/análogos & derivados , Óxidos N-Cíclicos/síntesis química , Depuradores de Radicales Libres/síntesis química , Peróxido de Hidrógeno/antagonistas & inhibidores , Peróxido de Hidrógeno/química , Interacciones Hidrofóbicas e Hidrofílicas , Radical Hidroxilo/antagonistas & inhibidores , Radical Hidroxilo/química , Peroxidación de Lípido , Óxidos de Nitrógeno/síntesis química , Peróxidos/antagonistas & inhibidores , Peróxidos/química , Fosfatidilcolinas/química
12.
Biochim Biophys Acta Biomembr ; 1859(6): 1144-1155, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28322731

RESUMEN

Bax is a major player in the apoptotic process, being at the core of the mitochondria permeabilization events. In spite of the major recent advances in the knowledge of Bax organization within the membrane, the precise behavior of the C-terminal helix α9 remains elusive, since it was absent from the resolved structure of active Bax. The Proline 168 (P168) residue, located in the short loop between α8 and α9, has been the target of site-directed mutagenesis experiments, with conflicting results. We have produced and purified a recombinant mutant Bax-P168A, and we have compared its behavior with that of wild-type Bax in a series of tests on Large Unilamellar Vesicles (LUVs) and isolated mitochondria. We conclude that Bax-P168A had a greater ability to oligomerize and bind to membranes. Bax-P168A was not more efficient than wild-type Bax to permeabilize liposomes to small molecules but was more prone to release cytochrome c from mitochondria.


Asunto(s)
Alanina/química , Mitocondrias/metabolismo , Prolina/química , Liposomas Unilamelares/metabolismo , Proteína X Asociada a bcl-2/química , Alanina/metabolismo , Sustitución de Aminoácidos , Clonación Molecular , Citocromos c/metabolismo , Expresión Génica , Células HCT116 , Humanos , Liposomas/química , Liposomas/metabolismo , Mitocondrias/química , Mutación , Permeabilidad , Prolina/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Liposomas Unilamelares/química , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
13.
Anal Chem ; 89(6): 3245-3249, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28267311

RESUMEN

Aqueous mixtures of two or more surfactants are often employed for research or industrial purposes because such mixtures offer advantages over single-surfactant systems. This is particularly true for mixtures of fluorocarbon (FC) and hydrocarbon (HC) surfactants, which display a broad range of mutual miscibilities in mixed micelles. Unfortunately, the prediction and even the experimental elucidation of the micellar mixing behavior of surfactant mixtures remain challenging, as evidenced by conflicting results and conclusions derived from diverse, and often complex, mixing models. One of the most intriguing questions is whether certain combinations of FC and HC surfactants form only one type of mixed micelle or rather demix into two micelle populations, namely, FC-rich and HC-rich ones. Here, we demonstrate a novel approach to the model-free analysis of critical micellar concentrations (CMCs) of surfactant mixtures that is based on a fit of the experimental data with cubic splines using a stringent thermodynamic criterion for mixing. As a proof of principle, we analyze CMC values determined by isothermal titration calorimetry and confirm the conclusions with the aid of combined 1H- and 19F-NMR spectroscopy. Specifically, we show that aqueous mixtures of an FC maltoside and an HC maltoside conform with the assumption of only one type of micelle regardless of the mixing ratio, whereas combining the same FC surfactant with an HC surfactant carrying a zwitterionic phosphocholine headgroup gives rise to two coexisting micelle populations at high mole fractions of the FC maltoside.

14.
J Org Chem ; 82(1): 135-142, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-27997175

RESUMEN

Two bifunctional α-phenyl-N-cyclohexyl nitrones were synthesized with the expectation that the cyclohexyl ring will impart lipophilicity to the molecule, high reactivity to the nitronyl group, and stability to the spin adducts formed. The synthesis of the acid nitrone 4 and its corresponding tert-butyl ester 3 was initiated by a Michael reaction to introduce the cyclohexyl ring. A Zn/AcOH-mediated reduction of the nitro functionality followed by condensation onto benzaldehyde generated the nitronyl function. In agreement with their high lipophilicity values, nitrone 3 was insoluble in water, while nitrone 4 exhibited a poor water solubility. It was determined that the presence of the cyclohexyl ring did not affect either the reduction or oxidation potentials of the nitronyl group in comparison to the classical α-phenyl-N-tert-butylnitrone (PBN). The spin trapping ability of 3 and 4 was investigated by EPR for oxygen- and carbon-centered radicals. In most cases, the nitrones gave rise to a standard six-line EPR spectrum whose values were in agreement with the literature, accompanied by a minor second species. In DMSO, the half-lives of nitrone 3 and 4-OOH adducts were double that of PBN, suggesting that the stabilization comes from the cyclohexyl ring and/or the electronic effect of the carboxylic acid.

15.
Basic Res Cardiol ; 111(4): 40, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27164904

RESUMEN

Obesity and diabetes are associated with higher cardiac vulnerability to ischemia-reperfusion (IR). The cardioprotective effect of regular exercise has been attributed to ß3-adrenergic receptor (ß3AR) stimulation and increased endothelial nitric oxide synthase (eNOS) activation. Here, we evaluated the role of the ß3AR-eNOS pathway and NOS isoforms in exercise-induced cardioprotection of C57Bl6 mice fed with high fat and sucrose diet (HFS) for 12 weeks and subjected or not to exercise training during the last 4 weeks (HFS-Ex). HFS animals were more sensitive to in vivo and ex vivo IR injuries than control (normal diet) and HFS-Ex mice. Cardioprotection in HFS-Ex mice was not associated with increased myocardial eNOS activation and NO metabolites storage, possibly due to the ß3AR-eNOS pathway functional loss in their heart. Indeed, a selective ß3AR agonist (BRL37344) increased eNOS activation and had a protective effect against IR in control, but not in HFS hearts. Moreover, iNOS expression, nitro-oxidative stress (protein s-nitrosylation and nitrotyrosination) and ROS production during early reperfusion were increased in HFS, but not in control mice. Exercise normalized iNOS level and reduced protein s-nitrosylation, nitrotyrosination and ROS production in HFS-Ex hearts during early reperfusion. The iNOS inhibitor 1400 W reduced in vivo infarct size in HFS mice to control levels, supporting the potential role of iNOS normalization in the cardioprotective effects of exercise training in HFS-Ex mice. Although the ß3AR-eNOS pathway is defective in the heart of HFS mice, regular exercise can protect their heart against IR by reducing iNOS expression and nitro-oxidative stress.


Asunto(s)
Daño por Reperfusión Miocárdica/metabolismo , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Obesidad/complicaciones , Condicionamiento Físico Animal/fisiología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Isquemia Miocárdica/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Receptores Adrenérgicos beta 3/metabolismo
16.
Bioconjug Chem ; 27(3): 772-81, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26850367

RESUMEN

We report herein the synthesis of a divalent amphiphilic carrier onto which α-phenyl-N-tert-butyl nitrone (PBN) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) antioxidants were grafted to give the divalent derivative called FATxPBN. The divalent carrier consists of two lysine amino acids as a scaffold upon which the antioxidant moieties are grafted, a perfluorinated chain that supplies hydrophobicity, and a sugar-based polar headgroup that ensures water solubility. For the sake of comparison, a divalent PBN derivative called FADiPBN was also synthesized. The self-aggregation properties of FATxPBN and FADiPBN were studied by means of surface tension, dynamic light scattering, and transmission electron microscopy methods, and showed they form small micelles (i.e., 12 and 6 nm diameter, respectively) at submillimolar concentrations (i.e., 0.01 and 0.05 mM, respectively), in agreement with partition coefficient values. The superior antioxidant properties of FATxPBN over FADiPBN and the parent compounds PBN and Trolox were demonstrated using in vitro ABTS(•+) reduction (98%) and soybean lipoxygenase inhibition (94%) assays. Finally, FATxPBN was found to significantly inhibit hyperglycemia-induced toxicity on an ex-vivo rat model, demonstrating its potency as a bioactive antioxidant against oxidative stress-induced damage.


Asunto(s)
Aminoácidos/química , Antioxidantes/síntesis química , Animales , Antioxidantes/química , Antioxidantes/farmacología , Ratas , Ratas Wistar
17.
J Org Chem ; 81(2): 681-8, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26694765

RESUMEN

Two hybrid fluorinated double-chain surfactants with a diglucosylated polar head were synthesized. The apolar domain consists of a perfluorohexyl main chain and a butyl hydrogenated branch as a side chain. They were found to self-assemble into small micelles at low critical micellar concentrations, demonstrating that the short branch increases the overall hydrophobicity while keeping the length of the apolar domain short. They were both able to keep the membrane protein bacteriorhodopsin stable, one of them for at least 3 months.


Asunto(s)
Bacteriorodopsinas/química , Proteínas de la Membrana/química , Bacteriorodopsinas/metabolismo , Halogenación , Hidrogenación , Proteínas de la Membrana/metabolismo , Estabilidad Proteica , Tensión Superficial , Tensoactivos , Termodinámica
18.
Biophys J ; 109(7): 1483-96, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26445449

RESUMEN

Intrinsically disordered proteins (IDPs) perform their physiological role without possessing a well-defined three-dimensional structure. Still, residual structure and conformational dynamics of IDPs are crucial for the mechanisms underlying their functions. For example, regions of transient secondary structure are often involved in molecular recognition, with the structure being stabilized (or not) upon binding. Long-range interactions, on the other hand, determine the hydrodynamic radius of the IDP, and thus the distance over which the protein can catch binding partners via so-called fly-casting mechanisms. The modulation of long-range interactions also presents a convenient way of fine-tuning the protein's interaction network, by making binding sites more or less accessible. Here we studied, mainly by nuclear magnetic resonance spectroscopy, residual secondary structure and long-range interactions in nonstructural protein 5A (NS5A) from hepatitis C virus (HCV), a typical viral IDP with multiple functions during the viral life cycle. NS5A comprises an N-terminal folded domain, followed by a large (∼250-residue) disordered C-terminal part. Comparing nuclear magnetic resonance spectra of full-length NS5A with those of a protein construct composed of only the C-terminal residues 191-447 (NS5A-D2D3) allowed us to conclude that there is no significant interaction between the globular and disordered parts of NS5A. NS5A-D2D3, despite its overall high flexibility, shows a large extent of local residual (α-helical and ß-turn) structure, as well as a network of electrostatic long-range interactions. Furthermore, we could demonstrate that these long-range interactions become modulated upon binding to the host protein Bin1, as well as after NS5A phosphorylation by CK2. As the charged peptide regions involved in these interactions are well conserved among the different HCV genotypes, these transient long-range interactions may be important for some of the functions of NS5A over the course of the HCV life cycle.


Asunto(s)
Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Sitios de Unión , Escherichia coli , Cinética , Espectroscopía de Resonancia Magnética , Fosforilación , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Dispersión del Ángulo Pequeño , Electricidad Estática , Proteínas no Estructurales Virales/aislamiento & purificación , Difracción de Rayos X , Dominios Homologos src
19.
Proc Natl Acad Sci U S A ; 109(17): 6733-8, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22493271

RESUMEN

G protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters, representing the largest group of therapeutic targets. Recent studies show that some GPCRs signal through both G protein and arrestin pathways in a ligand-specific manner. Ligands that direct signaling through a specific pathway are known as biased ligands. The arginine-vasopressin type 2 receptor (V2R), a prototypical peptide-activated GPCR, is an ideal model system to investigate the structural basis of biased signaling. Although the native hormone arginine-vasopressin leads to activation of both the stimulatory G protein (Gs) for the adenylyl cyclase and arrestin pathways, synthetic ligands exhibit highly biased signaling through either Gs alone or arrestin alone. We used purified V2R stabilized in neutral amphipols and developed fluorescence-based assays to investigate the structural basis of biased signaling for the V2R. Our studies demonstrate that the Gs-biased agonist stabilizes a conformation that is distinct from that stabilized by the arrestin-biased agonists. This study provides unique insights into the structural mechanisms of GPCR activation by biased ligands that may be relevant to the design of pathway-biased drugs.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Espectrometría de Fluorescencia/métodos , Ligandos , Conformación Proteica , Receptores Acoplados a Proteínas G/química
20.
Angew Chem Int Ed Engl ; 54(17): 5069-73, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25753129

RESUMEN

Surfactants carrying fluorocarbon chains hold great promise as gentle alternatives to conventional hydrocarbon-based detergents for the solubilization and handling of integral membrane proteins. However, their inertness towards lipid bilayer membranes has limited the usefulness of fluorinated surfactants in situations where detergent-like activity is required. We demonstrate that fluorination does not necessarily preclude detergency, as exemplified by a fluorinated octyl maltoside derivative termed F6 OM. This nonionic compound readily interacts with and completely solubilizes phospholipid vesicles in a manner reminiscent of conventional detergents without, however, compromising membrane order at subsolubilizing concentrations. Owing to this mild and unusual mode of detergency, F6 OM outperforms a lipophobic fluorinated surfactant in chaperoning the functional refolding of an integral membrane enzyme by promoting bilayer insertion in the absence of micelles.


Asunto(s)
Detergentes/química , Proteínas de la Membrana/química , Halogenación , Liposomas/química , Liposomas/metabolismo , Proteínas de la Membrana/metabolismo , Micelas , Fosfatidilcolinas/química , Replegamiento Proteico , Tensoactivos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA