Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 15(2): e1007572, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30779811

RESUMEN

Antibodies that mediate killing of HIV-infected cells through antibody-dependent cellular cytotoxicity (ADCC) have been implicated in protection from HIV infection and disease progression. Despite these observations, these types of HIV antibodies are understudied compared to neutralizing antibodies. Here we describe four monoclonal antibodies (mAbs) obtained from one individual that target the HIV transmembrane protein, gp41, and mediate ADCC activity. These four mAbs arose from independent B cell lineages suggesting that in this individual, multiple B cell responses were induced by the gp41 antigen. Competition and phage peptide display mapping experiments suggested that two of the mAbs target epitopes in the cysteine loop that are highly conserved and a common target of HIV gp41-specific antibodies. The amino acid sequences that bind these mAbs are overlapping but distinct. The two other mAbs were competed by mAbs that target the C-terminal heptad repeat (CHR) and the fusion peptide proximal region (FPPR) and appear to both target a similar unique conformational epitope. These gp41-specific mAbs mediated killing of infected cells that express high levels of Env due to either pre-treatment with interferon or deletion of vpu to increase levels of BST-2/Tetherin. They also mediate killing of target cells coated with various forms of the gp41 protein, including full-length gp41, gp41 ectodomain or a mimetic of the gp41 stump. Unlike many ADCC mAbs that target HIV gp120, these gp41-mAbs are not dependent on Env structural changes associated with membrane-bound CD4 interaction. Overall, the characterization of these four new mAbs that target gp41 and mediate ADCC provides evidence for diverse gp41 B cell lineages with overlapping but distinct epitopes within an individual. Such antibodies that can target various forms of envelope protein could represent a common response to a relatively conserved HIV epitope for a vaccine.


Asunto(s)
Anticuerpos Anti-VIH/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , Secuencia de Aminoácidos , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/fisiología , Ensayo de Inmunoadsorción Enzimática/métodos , Epítopos/inmunología , Anticuerpos Anti-VIH/fisiología , Infecciones por VIH/inmunología , VIH-1/inmunología , Humanos , Pruebas de Neutralización/métodos
2.
J Proteome Res ; 19(4): 1459-1469, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32141294

RESUMEN

Bottom-up proteomics is a mainstay in protein identification and analysis. These studies typically employ proteolytic treatment of biological samples to generate suitably sized peptides for tandem mass spectrometric (MS) analysis. In MS, fragmentation of peptides is largely driven by charge localization. Consequently, peptides with basic centers exclusively on their N-termini produce mainly b-ions. Thus, it was long ago realized that proteases that yield such peptides would be valuable proteomic tools for achieving simplified peptide fragmentation patterns and peptide assignment. Work by several groups has identified such proteases, however, structural analysis of these suggested that enzymatic optimization was possible. We therefore endeavored to find enzymes that could provide enhanced activity and versatility while maintaining specificity. Using these previously described proteases as informatic search templates, we discovered and then characterized a thermophilic metalloprotease with N-terminal specificity for arginine and lysine. This enzyme, dubbed Tryp-N, affords many advantages including improved thermostability, solvent and detergent tolerance, and rapid digestion time.


Asunto(s)
Péptido Hidrolasas , Proteómica , Secuencia de Aminoácidos , Péptidos , Espectrometría de Masas en Tándem
3.
Photosynth Res ; 123(1): 45-60, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25193505

RESUMEN

The ability of Prochlorococcus to numerically dominate open ocean regions and contribute significantly to global carbon cycles is dependent in large part on its effectiveness in transforming light energy into compounds used in cell growth, maintenance, and division. Integral to these processes is the carbon dioxide-concentrating mechanism (CCM), which enhances photosynthetic CO2 fixation. The CCM involves both active uptake systems that permit intracellular accumulation of inorganic carbon as the pool of bicarbonate and the system of HCO3 (-) conversion into CO2. The latter is located in the carboxysome, a microcompartment designed to promote the carboxylase activity of Rubisco. This study presents a comparative analysis of several facets of the Prochlorococcus CCM. Our analyses indicate that a core set of CCM components is shared, and their genomic organization is relatively well conserved. Moreover, certain elements, including carboxysome shell polypeptides CsoS1 and CsoS4A, exhibit striking conservation. Unexpectedly, our analyses reveal that the carbonic anhydrase (CsoSCA) and CsoS2 shell polypeptide have diversified within the lineage. Differences in csoSCA and csoS2 are consistent with a model of unequal rates of evolution rather than relaxed selection. The csoS2 and csoSCA genes form a cluster in Prochlorococcus genomes, and we identified two conserved motifs directly upstream of this cluster that differ from the motif in marine Synechococcus and could be involved in regulation of gene expression. Although several elements of the CCM remain well conserved in the Prochlorococcus lineage, the evolution of differences in specific carboxysome features could in part reflect optimization of carboxysome-associated processes in dissimilar cellular environments.


Asunto(s)
Dióxido de Carbono/metabolismo , Prochlorococcus/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ciclo del Carbono , Cromosomas Bacterianos , Regulación Bacteriana de la Expresión Génica/fisiología , Genoma Bacteriano , Datos de Secuencia Molecular , Prochlorococcus/genética
4.
Blood Adv ; 3(7): 984-994, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30936059

RESUMEN

Patients with chronic graft-versus-host disease (cGVHD) have a paucity of regulatory CD4 T cells (CD4Tregs) that mediate peripheral tolerance. In clinical trials, daily low-dose interleukin-2 (IL-2) has been administered safely for prolonged periods in patients with steroid-refractory cGVHD. Peripheral CD4Tregs expand dramatically in all patients during IL-2 therapy but clinical improvement was observed in ∼50% of patients. Here, we examined the impact of low-dose IL-2 therapy on functional T-cell markers and the T-cell repertoire within CD4Tregs, conventional CD4 T cells (CD4Tcons), and CD8+ T cells. IL-2 had profound effects on CD4Tregs homeostasis in both response groups including selective expansion of the naive subset, improved thymic output, and increased expression of Ki67, FOXP3, and B-cell lymphoma 2 within CD4Tregs. Similar changes were not seen in CD4Tcons or CD8 T cells. Functionally, low-dose IL-2 enhanced, in vitro, CD4Treg-suppressive activity in both response groups, and all patient CD4Tcons were similarly suppressed by healthy donor CD4Tregs. High-throughput sequencing of the T-cell receptor ß (TCRß) locus demonstrated that low-dose IL-2 therapy increased TCR repertoire diversity and decreased evenness within CD4Tregs without affecting CD4Tcons or CD8 T cells. Using clone-tracking analysis, we observed rapid turnover of highly prevalent clones in CD4Tregs as well as the conversion of CD4Tcons to CD4Tregs. After 12 weeks of daily IL-2, clinical responders had a greater influx of novel clones within the CD4Treg compartment compared with nonresponders. Further studies to define the function and specificity of these novel CD4Treg clones may help establish the mechanisms whereby low-dose IL-2 therapy promotes immune tolerance.


Asunto(s)
Resistencia a Medicamentos , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Interleucina-2/administración & dosificación , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Proliferación Celular , Enfermedad Crónica , Femenino , Variación Genética , Enfermedad Injerto contra Huésped/inmunología , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Interleucina-2/farmacología , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos T/genética , Esteroides/farmacología , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA