Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-19, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37498146

RESUMEN

In the last few years, the worldwide population has suffered from the SARS-CoV-2 pandemic. The WHO dashboard indicated that around 504,079,039 people were infected and 6,204,155 died from COVID-19 caused by different variants of SARS-CoV-2. Recently, a new variant of SARS-CoV-2 (B.1.1.529) was reported by South Africa known as Omicron. The high transmissibility rate and resistance towards available anti-SARS-CoV-2 drugs/vaccines/monoclonal antibodies, make Omicron a variant of concern. Because of various mutations in spike protein, available diagnostic and therapeutic treatments are not reliable. Therefore, the present study explored the development of some therapeutic peptides that can inhibit the SARS-CoV-2 virus interaction with host ACE2 receptors and can also be used for diagnostic purposes. The screened linear B cell epitopes derived from receptor-binding domain of spike protein of Omicron variant were evaluated as peptide inhibitor/vaccine candidates through different bioinformatics tools including molecular docking and simulation to analyze the interaction between Omicron peptide and human ACE2 receptor. Overall, in-silico studies revealed that Omicron peptides OP1-P12, OP14, OP20, OP23, OP24, OP25, OP26, OP27, OP28, OP29, and OP30 have the potential to inhibit Omicron interaction with ACE2 receptor. Moreover, Omicron peptides OP20, OP22, OP23, OP24, OP25, OP26, OP27, and OP30 have shown potential antigenic and immunogenic properties that can be used in design and development vaccines against Omicron. Although the in-silico validation was performed by comparative analysis with the control peptide inhibitor, further validation through wet lab experimentation is required before its use as therapeutic peptides.Communicated by Ramaswamy H. Sarma.

2.
Sci Rep ; 10(1): 14741, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32901076

RESUMEN

Among the other diseases, malaria and diarrhoea have a large disease burden in India, especially among children. Changes in rainfall and temperature patterns likely play a major role in the increased incidence of these diseases across geographical locations. This study proposes a method for probabilistic forecasting of the disease incidences in extended range time scale (2-3 weeks in advance) over India based on an unsupervised pattern recognition technique that uses meteorological parameters as inputs and which can be applied to any geographical location over India. To verify the robustness of this newly developed early warning system, detailed analysis has been made in the incidence of malaria and diarrhoea over two districts of the State of Maharashtra. It is found that the increased probabilities of high (less) rainfall, high (low) minimum temperature and low (moderate) maximum temperature are more (less) conducive for both diseases over these locations, but have different thresholds. With the categorical probabilistic forecasts of disease incidences, this early health warning system is found to be a useful tool with reasonable skill to provide the climate-health outlook about possible disease incidence at least 2 weeks in advance for any location or grid over India.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA