Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Hum Mol Genet ; 29(1): 117-131, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31696233

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by abnormal expansion of glutamine (Q) encoding CAG repeats in the gene Ataxin-1 (ATXN1). Although motor and balance deficits are the core symptoms of SCA1, cognitive decline is also commonly observed in patients. While mutant ATXN1 is expressed throughout the brain, pathological findings reveal severe atrophy of cerebellar cortex in SCA1 patients. The cerebellum has recently been implicated in diverse cognitive functions, yet to what extent cerebellar neurodegeneration contributes to cognitive alterations in SCA1 remains poorly understood. Much of our understanding of the mechanisms underlying pathogenesis of motor symptoms in SCA1 comes from mouse models. Reasoning that mouse models could similarly offer important insights into the mechanisms of cognitive alterations in SCA1, we tested cognition in several mouse lines using Barnes maze and fear conditioning. We confirmed cognitive deficits in Atxn1154Q/2Q knock-in mice with brain-wide expression of mutant ATXN1 and in ATXN1 null mice. We found that shorter polyQ length and haploinsufficiency of ATXN1 do not cause significant cognitive deficits. Finally, ATXN1[82Q ] transgenic mice-with cerebellum limited expression of mutant ATXN1-demonstrated milder impairment in most aspects of cognition compared to Atxn1154Q/2Q mice, supporting the concept that cognitive deficits in SCA1 arise from a combination of cerebellar and extra-cerebellar dysfunctions.


Asunto(s)
Ataxina-1/metabolismo , Cerebelo/metabolismo , Disfunción Cognitiva/metabolismo , Animales , Ataxina-1/genética , Ataxina-3/genética , Ataxina-3/metabolismo , Cognición/fisiología , Disfunción Cognitiva/genética , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo
2.
Nature ; 498(7454): 325-331, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23719381

RESUMEN

Many neurodegenerative disorders, such as Alzheimer's, Parkinson's and polyglutamine diseases, share a common pathogenic mechanism: the abnormal accumulation of disease-causing proteins, due to either the mutant protein's resistance to degradation or overexpression of the wild-type protein. We have developed a strategy to identify therapeutic entry points for such neurodegenerative disorders by screening for genetic networks that influence the levels of disease-driving proteins. We applied this approach, which integrates parallel cell-based and Drosophila genetic screens, to spinocerebellar ataxia type 1 (SCA1), a disease caused by expansion of a polyglutamine tract in ataxin 1 (ATXN1). Our approach revealed that downregulation of several components of the RAS-MAPK-MSK1 pathway decreases ATXN1 levels and suppresses neurodegeneration in Drosophila and mice. Importantly, pharmacological inhibitors of components of this pathway also decrease ATXN1 levels, suggesting that these components represent new therapeutic targets in mitigating SCA1. Collectively, these data reveal new therapeutic entry points for SCA1 and provide a proof-of-principle for tackling other classes of intractable neurodegenerative diseases.


Asunto(s)
Drosophila melanogaster/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/toxicidad , Proteínas Nucleares/metabolismo , Proteínas Nucleares/toxicidad , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología , Proteínas ras/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Ataxina-1 , Ataxinas , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Drosophila melanogaster/genética , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Datos de Secuencia Molecular , Terapia Molecular Dirigida , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilación , Estabilidad Proteica/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas 90-kDa/deficiencia , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Transgenes
3.
Neurobiol Dis ; 116: 93-105, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29758256

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a polyglutamine (polyQ) repeat neurodegenerative disease in which a primary site of pathogenesis are cerebellar Purkinje cells. In addition to polyQ expansion of ataxin-1 protein (ATXN1), phosphorylation of ATXN1 at the serine 776 residue (ATXN1-pS776) plays a significant role in protein toxicity. Utilizing a biochemical approach, pharmacological agents and cell-based assays, including SCA1 patient iPSC-derived neurons, we examine the role of Protein Kinase A (PKA) as an effector of ATXN1-S776 phosphorylation. We further examine the implications of PKA-mediated phosphorylation at ATXN1-S776 on SCA1 through genetic manipulation of the PKA catalytic subunit Cα in Pcp2-ATXN1[82Q] mice. Here we show that pharmacologic inhibition of S776 phosphorylation in transfected cells and SCA1 patient iPSC-derived neuronal cells lead to a decrease in ATXN1. In vivo, reduction of PKA-mediated ATXN1-pS776 results in enhanced degradation of ATXN1 and improved cerebellar-dependent motor performance. These results provide evidence that PKA is a biologically important kinase for ATXN1-pS776 in cerebellar Purkinje cells.


Asunto(s)
Ataxia/metabolismo , Ataxina-1/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células de Purkinje/metabolismo , Serina/metabolismo , Animales , Ataxia/genética , Ataxia/patología , Ataxina-1/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Fosforilación/fisiología , Células de Purkinje/patología , Serina/genética
4.
J Neurosci ; 33(13): 5806-20, 2013 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-23536093

RESUMEN

Previous studies indicate that while transgenic mice with ATXN1[30Q]-D776-induced disease share pathological features caused by ATXN1[82Q] having an expanded polyglutamine tract, they fail to manifest the age-related progressive neurodegeneration seen in spinocerebellar ataxia type 1. The shared features include morphological alterations in climbing fiber (CF) innervation of Purkinje cells (PCs). To further investigate the ability of ataxin-1 (ATXN1) to impact CF/PC innervation, this study used morphological and functional approaches to examine CF/PC innervation during postnatal development in ATXN1[30Q]-D776 and ATXN1[82Q] cerebella. Notably, ATXN1[30Q]-D776 induced morphological alterations consistent with the development of the innervation of PCs by CFs being compromised, including a reduction of CF translocation along the PC dendritic tree, and decreased pruning of CF terminals from the PC soma. As previously shown for ATXN1[82Q], ATXN1[30Q]-D776 must enter the nucleus of PCs to induce these alterations. Experiments using conditional ATXN1[30Q]-D776 mice demonstrate that both the levels and specific timing of mutant ATXN1 expression are critical for alteration of the CF-PC synapse. Together these observations suggest that ATXN1, expressed exclusively in PCs, alters expression of a gene(s) in the postsynaptic PC that are critical for its innervation by CFs. To investigate whether ATXN1[30Q]-D776 curbs the progressive disease in ATXN1[82Q]-S776 mice, we crossed ATXN1[30Q]-D776 and ATXN1[82Q]-S776 mice and found that double transgenic mice developed progressive PC atrophy. Thus, the results also show that to develop progressive cerebellar degeneration requires expressing ATXN1 with an expanded polyglutamine tract.


Asunto(s)
Cerebelo/crecimiento & desarrollo , Cerebelo/patología , Fibras Nerviosas/patología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Células de Purkinje/metabolismo , Ataxias Espinocerebelosas/patología , Sinapsis/patología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Ataxina-1 , Ataxinas , Calbindinas , Evaluación de la Discapacidad , Modelos Animales de Enfermedad , Estimulación Eléctrica , Colorantes Fluorescentes , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Potenciales de la Membrana/genética , Ratones , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Mutación/genética , Fibras Nerviosas/metabolismo , Fibras Nerviosas/fisiología , Proteínas del Tejido Nervioso/genética , Neuropéptidos/genética , Proteínas Nucleares/genética , Imagen Óptica , Técnicas de Placa-Clamp , ARN Mensajero/metabolismo , Proteína G de Unión al Calcio S100/metabolismo , Ataxias Espinocerebelosas/genética , Sinapsis/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
5.
JCI Insight ; 9(9)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512434

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by an expanded polyglutamine tract in the widely expressed ataxin-1 (ATXN1) protein. To elucidate anatomical regions and cell types that underlie mutant ATXN1-induced disease phenotypes, we developed a floxed conditional knockin mouse (f-ATXN1146Q/2Q) with mouse Atxn1 coding exons replaced by human ATXN1 exons encoding 146 glutamines. f-ATXN1146Q/2Q mice manifested SCA1-like phenotypes including motor and cognitive deficits, wasting, and decreased survival. Central nervous system (CNS) contributions to disease were revealed using f-ATXN1146Q/2Q;Nestin-Cre mice, which showed improved rotarod, open field, and Barnes maze performance by 6-12 weeks of age. In contrast, striatal contributions to motor deficits using f-ATXN1146Q/2Q;Rgs9-Cre mice revealed that mice lacking ATXN1146Q/2Q in striatal medium-spiny neurons showed a trending improvement in rotarod performance at 30 weeks of age. Surprisingly, a prominent role for muscle contributions to disease was revealed in f-ATXN1146Q/2Q;ACTA1-Cre mice based on their recovery from kyphosis and absence of muscle pathology. Collectively, data from the targeted conditional deletion of the expanded allele demonstrated CNS and peripheral contributions to disease and highlighted the need to consider muscle in addition to the brain for optimal SCA1 therapeutics.


Asunto(s)
Ataxina-1 , Modelos Animales de Enfermedad , Músculo Esquelético , Ataxias Espinocerebelosas , Animales , Ataxina-1/genética , Ataxina-1/metabolismo , Ratones , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Humanos , Masculino , Ratones Transgénicos , Técnicas de Sustitución del Gen , Femenino , Fenotipo , Neuronas/metabolismo , Neuronas/patología
6.
Hum Mol Genet ; 20(11): 2204-12, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21427130

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is one of nine dominantly inherited neurodegenerative diseases caused by polyglutamine tract expansion. In SCA1, the expanded polyglutamine tract is in the ataxin-1 (ATXN1) protein. ATXN1 is part of an in vivo complex with retinoid acid receptor-related orphan receptor alpha (Rora) and the acetyltransferase tat-interactive protein 60 kDa (Tip60). ATXN1 and Tip60 interact directly via the ATXN1 and HMG-box protein 1 (AXH) domain of ATXN1. Moreover, the phospho-mimicking Asp amino acid at position 776, previously shown to enhance pathogenesis, increases the ability of ATXN1 to interact with Tip60. Using a genetic approach, the biological relevance of the ATXN1/Tip60 interaction was assessed by crossing ATXN1[82Q] mice with Tip60(+/-)animals. Partial Tip60 loss increased Rora and Rora-mediated gene expression and delayed ATXN1[82]-mediated cerebellar degeneration during mid-stage disease progression. These results suggested a specific, temporal role for Tip60 during disease progression. We also showed that genetic background modulated ATXN1[82Q]-induced phenotypes. Of interest, these latter studies showed that some phenotypes are enhanced on a mixed background while others are suppressed.


Asunto(s)
Histona Acetiltransferasas/genética , Degeneración Nerviosa/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Ataxias Espinocerebelosas/genética , Animales , Ataxina-1 , Ataxinas , Células CHO , Mapeo Cromosómico , Cricetinae , Cricetulus , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Haploinsuficiencia , Histona Acetiltransferasas/metabolismo , Lisina Acetiltransferasa 5 , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Péptidos/genética , Fenotipo , Células de Purkinje/metabolismo , Células de Purkinje/patología , Transactivadores
7.
bioRxiv ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37214832

RESUMEN

Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disorder caused by a CAG-polyglutamine repeat expansion. SCA7 patients display a striking loss of Purkinje cell (PC) neurons with disease progression; however, PCs are rare, making them difficult to characterize. We developed a PC nuclei enrichment protocol and applied it to single-nucleus RNA-seq of a SCA7 knock-in mouse model. Our results unify prior observations into a central mechanism of cell identity loss, impacting both glia and PCs, driving accumulation of inhibitory synapses and altered PC spiking. Zebrin-II subtype dysregulation is the predominant signal in PCs, leading to complete loss of zebrin-II striping at motor symptom onset in SCA7 mice. We show this zebrin-II subtype degradation is shared across Polyglutamine Ataxia mouse models and SCA7 patients. It has been speculated that PC subtype organization is critical for cerebellar function, and our results suggest that a breakdown of zebrin-II parasagittal striping is pathological.

8.
Neuron ; 111(4): 493-507.e6, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36577403

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a dominant trinucleotide repeat neurodegenerative disease characterized by motor dysfunction, cognitive impairment, and premature death. Degeneration of cerebellar Purkinje cells is a frequent and prominent pathological feature of SCA1. We previously showed that transport of ATXN1 to Purkinje cell nuclei is required for pathology, where mutant ATXN1 alters transcription. To examine the role of ATXN1 nuclear localization broadly in SCA1-like disease pathogenesis, CRISPR-Cas9 was used to develop a mouse with an amino acid alteration (K772T) in the nuclear localization sequence of the expanded ATXN1 protein. Characterization of these mice indicates that proper nuclear localization of mutant ATXN1 contributes to many disease-like phenotypes including motor dysfunction, cognitive deficits, and premature lethality. RNA sequencing analysis of genes with expression corrected to WT levels in Atxn1175QK772T/2Q mice indicates that transcriptomic aspects of SCA1 pathogenesis differ between the cerebellum, brainstem, cerebral cortex, hippocampus, and striatum.


Asunto(s)
Ataxina-1 , Ataxias Espinocerebelosas , Transcriptoma , Animales , Ratones , Ataxina-1/genética , Ataxina-1/metabolismo , Encéfalo/metabolismo , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Fenotipo , Transporte de Proteínas/genética , Células de Purkinje/metabolismo , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo
9.
bioRxiv ; 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36798410

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by an expanded polyglutamine tract in the widely expressed ATXN1 protein. To elucidate anatomical regions and cell types that underlie mutant ATXN1-induced disease phenotypes, we developed a floxed conditional knockout mouse model ( f-ATXN1 146Q/2Q ) having mouse Atxn1 coding exons replaced by human exons encoding 146 glutamines. F-ATXN1 146Q/2Q mice manifest SCA1-like phenotypes including motor and cognitive deficits, wasting, and decreased survival. CNS contributions to disease were revealed using ATXN1 146Q/2Q ; Nestin-Cre mice, that showed improved rotarod, open field and Barnes maze performances. Striatal contributions to motor deficits were examined using f-ATXN1 146Q/2Q ; Rgs9-Cre mice. Mice lacking striatal ATXN1 146Q/2Q had improved rotarod performance late in disease. Muscle contributions to disease were revealed in f-ATXN1 146Q/2Q ; ACTA1-Cre mice which lacked muscle pathology and kyphosis seen in f-ATXN1 146Q/2Q mice. Kyphosis was not improved in f-ATXN1 146Q/2Q ;Nestin - Cre mice. Thus, optimal SCA1 therapeutics will require targeting mutant ATXN1 toxic actions in multiple brain regions and muscle.

10.
J Neurosci ; 31(36): 12778-89, 2011 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-21900557

RESUMEN

One fundamental unanswered question in the field of polyglutamine diseases concerns the pathophysiology of neuronal dysfunction. Is there dysfunction in a specific neuronal population or circuit initially that contributes the onset of behavioral abnormalities? This study used a systems-level approach to investigate the functional integrity of the excitatory cerebellar cortical circuitry in vivo from several transgenic ATXN1 mouse lines. We tested the hypotheses that there are functional climbing fiber (CF)-Purkinje cell (PC) and parallel fiber (PF)-PC circuit abnormalities using flavoprotein autofluorescence optical imaging and extracellular field potential recordings. In early-symptomatic and symptomatic animals expressing ATXN1[82Q], there is a marked reduction in PC responsiveness to CF activation. Immunostaining of vesicular glutamate transporter type 2 demonstrated a decrement in CF extension on PC dendrites in symptomatic ATXN1[82Q] mice. In contrast, responses to PF stimulation were relatively normal. Importantly, the deficits in CF-PC synaptic transmission required expression of pathogenic ataxin-1 (ATXN1[82Q]) and for its entrance into the nucleus of PCs. Loss of endogenous mouse Atxn1 had no discernible effects. Furthermore, the abnormalities in CF-PC synaptic transmission were ameliorated when mutant transgene expression was prevented during postnatal cerebellar development. The results demonstrate the preferential susceptibility of the CF-PC circuit to the effects of ATXN1[82Q]. Further, this deficit likely contributes to the abnormal motor phenotype of ATXN1[82Q] mice. For polyglutamine diseases generally, the findings support a model whereby specific neuronal circuits suffer insults that alter function before cell death.


Asunto(s)
Fibras Nerviosas/patología , Proteínas del Tejido Nervioso/genética , Vías Nerviosas/patología , Neuronas/patología , Proteínas Nucleares/genética , Células de Purkinje/patología , Ataxias Espinocerebelosas/patología , Animales , Ataxina-1 , Ataxinas , Western Blotting , Muerte Celular/fisiología , Fenómenos Electrofisiológicos , Femenino , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Trastornos del Movimiento/genética , Trastornos del Movimiento/patología , Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/fisiología , Técnicas de Placa-Clamp , Ataxias Espinocerebelosas/genética , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología
11.
Nat Commun ; 11(1): 3343, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620905

RESUMEN

The expanded polyglutamine (polyQ) tract form of ataxin-1 drives disease progression in spinocerebellar ataxia type 1 (SCA1). Although known to form distinctive intranuclear bodies, the cellular pathways and processes that polyQ-ataxin-1 influences remain poorly understood. Here we identify the direct and proximal partners constituting the interactome of ataxin-1[85Q] in Neuro-2a cells, pathways analyses indicating a significant enrichment of essential nuclear transporters, pointing to disruptions in nuclear transport processes in the presence of elevated levels of ataxin-1. Our direct assessments of nuclear transporters and their cargoes confirm these observations, revealing disrupted trafficking often with relocalisation of transporters and/or cargoes to ataxin-1[85Q] nuclear bodies. Analogous changes in importin-ß1, nucleoporin 98 and nucleoporin 62 nuclear rim staining are observed in Purkinje cells of ATXN1[82Q] mice. The results highlight a disruption of multiple essential nuclear protein trafficking pathways by polyQ-ataxin-1, a key contribution to furthering understanding of pathogenic mechanisms initiated by polyQ tract proteins.


Asunto(s)
Ataxina-1/metabolismo , Núcleo Celular/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Células de Purkinje/metabolismo , Transporte Activo de Núcleo Celular/genética , Animales , Ataxina-1/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Células HeLa , Humanos , Ratones , Mutación , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Péptidos/genética , Unión Proteica , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Expansión de Repetición de Trinucleótido/genética
12.
Neuropsychopharmacology ; 45(7): 1159-1170, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32179875

RESUMEN

Autism spectrum disorder (ASD) encompasses wide-ranging neuropsychiatric symptoms with unclear etiology. Although the cerebellum is a key region implicated in ASD, it remains elusive how the cerebellar circuitry is altered and whether the cerebellum can serve as a therapeutic target to rectify the phenotype of idiopathic ASD with polygenic abnormalities. Using a syndromic ASD model, e.g., Black and Tan BRachyury T+Itpr3tf/J (BTBR) mice, we revealed that increased excitability of presynaptic interneurons (INs) and decreased intrinsic excitability of postsynaptic Purkinje neurons (PNs) resulted in low PN firing rates in the cerebellum. Knowing that downregulation of Kv1.2 potassium channel in the IN nerve terminals likely augmented their excitability and GABA release, we applied a positive Kv1.2 modulator to mitigate the presynaptic over-inhibition and social impairment of BTBR mice. Selective restoration of the PN activity by a new chemogenetic approach alleviated core ASD-like behaviors of the BTBR strain. These findings highlight complex mechanisms converging onto the cerebellar dysfunction in the phenotypic model and provide effective strategies for potential therapies of ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Cerebelo , Animales , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Cerebelo/fisiopatología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL
13.
Mol Ther Nucleic Acids ; 21: 1006-1016, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32818920

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a lethal, autosomal dominant neurodegenerative disease caused by a polyglutamine expansion in the ATAXIN-1 (ATXN1) protein. Preclinical studies demonstrate the therapeutic efficacy of approaches that target and reduce Atxn1 expression in a non-allele-specific manner. However, studies using Atxn1-/- mice raise cautionary notes that therapeutic reductions of ATXN1 might lead to undesirable effects such as reduction in the activity of the tumor suppressor Capicua (CIC), activation of the protease ß-secretase 1 (BACE1) and subsequent increased amyloidogenic cleavage of the amyloid precursor protein (APP), or a reduction in hippocampal neuronal precursor cells that would impact hippocampal function. Here, we tested whether an antisense oligonucleotide (ASO)-mediated reduction of Atxn1 produced unwanted effects involving BACE1, CIC activity, or reduction in hippocampal neuronal precursor cells. Notably, no effects on BACE1, CIC tumor suppressor function, or number of hippocampal neuronal precursor cells were found in mice subjected to a chronic in vivo ASO-mediated reduction of Atxn1. These data provide further support for targeted reductions of ATXN1 as a therapeutic approach for SCA1.

14.
J Neurochem ; 110(2): 675-86, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19500214

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is one of nine inherited neurodegenerative disorders caused by a mutant protein with an expanded polyglutamine tract. Phosphorylation of ataxin-1 (ATXN1) at serine 776 is implicated in SCA1 pathogenesis. Previous studies, utilizing transfected cell lines and a Drosophila photoreceptor model of SCA1, suggest that phosphorylating ATXN1 at S776 renders it less susceptible to degradation. This work also indicated that oncogene from AKR mouse thymoma (Akt) promotes the phosphorylation of ATXN1 at S776 and severity of neurodegeneration. Here, we examined the phosphorylation of ATXN1 at S776 in cerebellar Purkinje cells, a prominent site of pathology in SCA1. We found that while phosphorylation of S776 is associated with a stabilization of ATXN1 in Purkinje cells, inhibition of Akt either in vivo or in a cerebellar extract-based phosphorylation assay did not decrease the phosphorylation of ATXN1-S776. In contrast, immunodepletion and inhibition of cyclic AMP-dependent protein kinase decreased phosphorylation of ATXN1-S776. These results argue against Akt as the in vivo kinase that phosphorylates S776 of ATXN1 and suggest that cyclic AMP-dependent protein kinase is the active ATXN1-S776 kinase in the cerebellum.


Asunto(s)
Cerebelo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina/metabolismo , Alanina/genética , Alanina/metabolismo , Secuencia de Aminoácidos , Animales , Ataxina-1 , Ataxinas , Cerebelo/enzimología , Estabilidad de Enzimas/genética , Humanos , Ratones , Ratones Endogámicos AKR , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Fosforilación , Mutación Puntual , Proteínas Proto-Oncogénicas c-akt/genética , Células de Purkinje/enzimología , Células de Purkinje/metabolismo , Serina/genética
15.
Neuron ; 38(3): 375-87, 2003 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-12741986

RESUMEN

Polyglutamine-induced neurodegeneration in transgenic mice carrying the spinocerebellar ataxia type 1 (SCA1) gene is modulated by subcellular distribution of ataxin-1 and by components of the protein folding/degradation machinery. Since phosphorylation is a prominent mechanism by which these processes are regulated, we examined phosphorylation of ataxin-1 and found that serine 776 (S776) was phosphorylated. Residue 776 appeared to affect cellular deposition of ataxin-1[82Q] in that ataxin-1[82Q]-A776 failed to form nuclear inclusions in tissue culture cells. The importance of S776 for polyglutamine-induced pathogenesis was examined by generating ataxin-1[82Q]-A776 transgenic mice. These mice expressed ataxin-1[82Q]-A776 within Purkinje cell nuclei, yet the ability of ataxin-1[82Q]-A776 to induce disease was substantially reduced. These studies demonstrate that polyglutamine tract expansion and localization of ataxin-1 to the nucleus of Purkinje cells are not sufficient to induce disease. We suggest that S776 of ataxin-1 also has a critical role in SCA1 pathogenesis.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/metabolismo , Células de Purkinje/metabolismo , Serina/metabolismo , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Secuencia de Aminoácidos/genética , Animales , Ataxina-1 , Ataxinas , Células CHO , Células COS , Núcleo Celular/genética , Núcleo Celular/patología , Cricetinae , Modelos Animales de Enfermedad , Femenino , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Masculino , Ratones , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Péptidos/genética , Fenotipo , Células de Purkinje/patología , Serina/genética , Ataxias Espinocerebelosas/fisiopatología , Expansión de Repetición de Trinucleótido/genética
16.
JCI Insight ; 3(21)2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30385727

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited ataxia caused by expansion of a translated CAG repeat encoding a glutamine tract in the ataxin-1 (ATXN1) protein. Despite advances in understanding the pathogenesis of SCA1, there are still no therapies to alter its progressive fatal course. RNA-targeting approaches have improved disease symptoms in preclinical rodent models of several neurological diseases. Here, we investigated the therapeutic capability of an antisense oligonucleotide (ASO) targeting mouse Atxn1 in Atxn1154Q/2Q-knockin mice that manifest motor deficits and premature lethality. Following a single ASO treatment at 5 weeks of age, mice demonstrated rescue of these disease-associated phenotypes. RNA-sequencing analysis of genes with expression restored to WT levels in ASO-treated Atxn1154Q/2Q mice was used to demonstrate molecular differences between SCA1 pathogenesis in the cerebellum and disease in the medulla. Finally, select neurochemical abnormalities detected by magnetic resonance spectroscopy in vehicle-treated Atxn1154Q/2Q mice were reversed in the cerebellum and brainstem (a region containing the pons and the medulla) of ASO-treated Atxn1154Q/2Q mice. Together, these findings support the efficacy and therapeutic importance of directly targeting ATXN1 RNA expression as a strategy for treating both motor deficits and lethality in SCA1.


Asunto(s)
Ataxina-1/efectos de los fármacos , Enfermedades Neurodegenerativas/genética , Oligonucleótidos Antisentido/uso terapéutico , Ataxias Espinocerebelosas/clasificación , Animales , Ataxina-1/metabolismo , Femenino , Espectroscopía de Resonancia Magnética/métodos , Masculino , Ratones , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/efectos adversos , Fenotipo , Análisis de Secuencia de ARN/métodos , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/genética , Análisis de Supervivencia , Transcriptoma
17.
Neuron ; 97(6): 1235-1243.e5, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29526553

RESUMEN

Polyglutamine (polyQ) diseases are caused by expansion of translated CAG repeats in distinct genes leading to altered protein function. In spinocerebellar ataxia type 1 (SCA1), a gain of function of polyQ-expanded ataxin-1 (ATXN1) contributes to cerebellar pathology. The extent to which cerebellar toxicity depends on its cognate partner capicua (CIC), versus other interactors, remains unclear. It is also not established whether loss of the ATXN1-CIC complex in the cerebellum contributes to disease pathogenesis. In this study, we exclusively disrupt the ATXN1-CIC interaction in vivo and show that it is at the crux of cerebellar toxicity in SCA1. Importantly, loss of CIC in the cerebellum does not cause ataxia or Purkinje cell degeneration. Expression profiling of these gain- and loss-of-function models, coupled with data from iPSC-derived neurons from SCA1 patients, supports a mechanism in which gain of function of the ATXN1-CIC complex is the major driver of toxicity.


Asunto(s)
Ataxina-1/deficiencia , Cerebelo/metabolismo , Mutación con Ganancia de Función/fisiología , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Animales , Ataxina-1/genética , Células Cultivadas , Cerebelo/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ataxias Espinocerebelosas/patología
18.
Neuron ; 89(6): 1194-1207, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26948890

RESUMEN

SCA1, a fatal neurodegenerative disorder, is caused by a CAG expansion encoding a polyglutamine stretch in the protein ATXN1. We used RNA sequencing to profile cerebellar gene expression in Pcp2-ATXN1[82Q] mice with ataxia and progressive pathology and Pcp2-ATXN1[30Q]D776 animals having ataxia in absence of Purkinje cell progressive pathology. Weighted Gene Coexpression Network Analysis of the cerebellar expression data revealed two gene networks that significantly correlated with disease and have an expression profile correlating with disease progression in ATXN1[82Q] Purkinje cells. The Magenta Module provides a signature of suppressed transcriptional programs reflecting disease progression in Purkinje cells, while the Lt Yellow Module reflects transcriptional programs activated in response to disease in Purkinje cells as well as other cerebellar cell types. Furthermore, we found that upregulation of cholecystokinin (Cck) and subsequent interaction with the Cck1 receptor likely underlies the lack of progressive Purkinje cell pathology in Pcp2-ATXN1[30Q]D776 mice.


Asunto(s)
Ataxina-1/genética , Cerebelo/metabolismo , Cerebelo/patología , Ataxias Espinocerebelosas/patología , Transcriptoma/genética , Animales , Ataxina-1/metabolismo , Quimiocinas CC/deficiencia , Quimiocinas CC/genética , Colecistoquinina/deficiencia , Colecistoquinina/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Redes Reguladoras de Genes , Factores de Intercambio de Guanina Nucleótido/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neuropéptidos/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/genética , Péptidos/metabolismo , Células de Purkinje/metabolismo , Receptor de Colecistoquinina B/deficiencia , Receptor de Colecistoquinina B/genética , Regulación hacia Arriba/genética
19.
J Neurosci ; 24(40): 8853-61, 2004 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-15470152

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant, polyglutamine-induced neurodegenerative disorder that results in loss of motor coordination caused primarily by a disruption of cerebellar Purkinje cell function. In this study, we developed a conditional SCA1 mouse model to examine whether stopping expression of mutant ataxin-1 alters the disease phenotype. After cessation of SCA1[82Q] transgene expression, mutant ataxin-1, including that in nuclear inclusions, was cleared rapidly from Purkinje cells. At an early stage of disease, Purkinje cell pathology and motor dysfunction were completely reversible. After halting SCA1 expression at later stages of disease, only a partial recovery was seen. Interestingly, restoration of the ability to perform a complex motor task, the accelerating Rotarod, correlated with localization of mGluR1alpha to the Purkinje cell-parallel fiber synapse. These results show that the progression of SCA1 pathogenesis is dependent on the continuous expression of mutant ataxin-1. Of note, even at a late stage of disease, Purkinje cells retain at least some ability to repair the damage caused by mutant ataxin-1.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Células de Purkinje/patología , Ataxias Espinocerebelosas/etiología , Animales , Ataxina-1 , Ataxinas , Expansión de las Repeticiones de ADN , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Doxiciclina/farmacología , Regulación de la Expresión Génica , Ratones , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/análisis , Proteínas Nucleares/análisis , Péptidos/genética , Células de Purkinje/química , Receptores de Glutamato Metabotrópico/análisis , Prueba de Desempeño de Rotación con Aceleración Constante , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Sinapsis/química
20.
Neuron ; 67(6): 929-35, 2010 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-20869591

RESUMEN

Glutamine tract expansion triggers nine neurodegenerative diseases by conferring toxic properties to the mutant protein. In SCA1, phosphorylation of ATXN1 at Ser776 is thought to be key for pathogenesis. Here, we show that replacing Ser776 with a phosphomimicking Asp converted ATXN1 with a wild-type glutamine tract into a pathogenic protein. ATXN1[30Q]-D776-induced disease in Purkinje cells shared most features with disease caused by ATXN1[82Q] having an expanded polyglutamine tract. However, in contrast to disease induced by ATXN1[82Q] that progresses to cell death, ATXN1[30Q]-D776 failed to induce cell death. These results support a model where pathogenesis involves changes in regions of the protein in addition to the polyglutamine tract. Moreover, disease initiation and progression to neuronal dysfunction are distinct from induction of cell death. Ser776 is critical for the pathway to neuronal dysfunction, while an expanded polyglutamine tract is essential for neuronal death.


Asunto(s)
Ácido Aspártico/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Serina/genética , Ataxias Espinocerebelosas/genética , Animales , Ataxina-1 , Ataxinas , Calbindinas , Cerebelo/patología , Dendritas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Ratones , Ratones Transgénicos , Actividad Motora/genética , Vías Nerviosas/metabolismo , Vías Nerviosas/patología , Células de Purkinje/patología , Células de Purkinje/ultraestructura , Prueba de Desempeño de Rotación con Aceleración Constante , Proteína G de Unión al Calcio S100/metabolismo , Ataxias Espinocerebelosas/patología , Ataxias Espinocerebelosas/fisiopatología , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA