Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ambio ; 50(11): 1953-1974, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33512668

RESUMEN

The majority of area burned by wildfire are located in Siberia. Mainly low-intensity surface fires occur in larch forests, whereas in evergreen forests both surface and crown fires are observed. Warming has led to an increase in the frequency and area of wildfires that have reached the Arctic Ocean shore. However, wildfires are the most important factor in taiga dynamics; larch and Scots pine have evolved under conditions of periodic forest fires, thereby gaining a competitive advantage over non-fire adapted species; in the permafrost zone, periodic fires are a prerequisite for the dominance of larch. Wildfires support ecosystem health, biodiversity, and conservation; periodic wildfires decrease the danger of catastrophic wildfires. With an amplified rate of increase in fires, it is necessary to focus fire suppression on areas of high social, natural, and economic value, while allowing a greater number of wildfires to burn in the vast Siberian forest landscapes.


Asunto(s)
Incendios , Incendios Forestales , Ecosistema , Bosques , Siberia , Taiga
2.
J Mt Sci ; 14(3): 442-452, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30008735

RESUMEN

The phenomenon of "tree waves" (hedges and ribbons) formation within the alpine ecotone in Altai Mountains and its response to observed air temperature increase was considered. At the upper limit of tree growth Siberian pine (Pinus sibirica) forms hedges on windward slopes and ribbons on the leeward ones. Hedges were formed by prevailing winds and oriented along winds direction. Ribbons were formed by snow blowing and accumulating on the leeward slope and perpendicular to the prevailing winds, as well as to the elevation gradient. Hedges were always linked with microtopography features, whereas ribbons were not. Trees are migrating upward by waves and new ribbons and hedges are forming at or near tree line, whereas at lower elevations ribbons and hedges are being transformed into closed forests. Time series of high-resolution satellite scenes (from 1968 to 2010) indicated an upslope shift in the position ribbons averaged 155±26 m (or 3.7 m yr-1) and crown closure increased (about 35-90%). The hedges advance was limited by poor regeneration establishment and was negligible. Regeneration within the "ribbon zone" was approximately 2.5 times (5060 vs 2120 ha-1) higher then within the "hedges zone". During the last four decades, Siberian pine in both hedges and ribbons strongly increased its growth increment and recent tree growth rate for 50 year old trees was about twice higher than recorded for similarly aged trees at the beginning of the 20th century. Hedges and ribbons are phenomena that are widespread within the southern and northern Siberian Mountains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA