Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Pathog ; 19(9): e1011487, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37747931

RESUMEN

Select prion diseases are characterized by widespread cerebral plaque-like deposits of amyloid fibrils enriched in heparan sulfate (HS), a abundant extracellular matrix component. HS facilitates fibril formation in vitro, yet how HS impacts fibrillar plaque growth within the brain is unclear. Here we found that prion-bound HS chains are highly sulfated, and that the sulfation is essential for accelerating prion conversion in vitro. Using conditional knockout mice to deplete the HS sulfation enzyme, Ndst1 (N-deacetylase / N-sulfotransferase) from neurons or astrocytes, we investigated how reducing HS sulfation impacts survival and prion aggregate distribution during a prion infection. Neuronal Ndst1-depleted mice survived longer and showed fewer and smaller parenchymal plaques, shorter fibrils, and increased vascular amyloid, consistent with enhanced aggregate transit toward perivascular drainage channels. The prolonged survival was strain-dependent, affecting mice infected with extracellular, plaque-forming, but not membrane bound, prions. Live PET imaging revealed rapid clearance of recombinant prion protein monomers into the CSF of neuronal Ndst1- deficient mice, neuronal, further suggesting that HS sulfate groups hinder transit of extracellular prion protein monomers. Our results directly show how a host cofactor slows the spread of prion protein through the extracellular space and identify an enzyme to target to facilitate aggregate clearance.


Asunto(s)
Neuronas , Enfermedades por Prión , Priones , Sulfotransferasas , Animales , Ratones , Heparitina Sulfato/metabolismo , Ratones Noqueados , Neuronas/enzimología , Enfermedades por Prión/metabolismo , Proteínas Priónicas/genética , Priones/metabolismo , Sulfotransferasas/genética , Sulfotransferasas/metabolismo
2.
J Biol Chem ; 298(8): 102159, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35750212

RESUMEN

Lysosomal storage diseases result in various developmental and physiological complications, including cachexia. To study the causes for the negative energy balance associated with cachexia, we assessed the impact of sulfamidase deficiency and heparan sulfate storage on energy homeostasis and metabolism in a mouse model of type IIIa mucopolysaccharidosis (MPS IIIa, Sanfilippo A syndrome). At 12-weeks of age, MPS IIIa mice exhibited fasting and postprandial hypertriglyceridemia compared with wildtype mice, with a reduction of white and brown adipose tissues. Partitioning of dietary [3H]triolein showed a marked increase in intestinal uptake and secretion, whereas hepatic production and clearance of triglyceride-rich lipoproteins did not differ from wildtype controls. Uptake of dietary triolein was also elevated in brown adipose tissue (BAT), and notable increases in beige adipose tissue occurred, resulting in hyperthermia, hyperphagia, hyperdipsia, and increased energy expenditure. Furthermore, fasted MPS IIIa mice remained hyperthermic when subjected to low temperature but became cachexic and profoundly hypothermic when treated with a lipolytic inhibitor. We demonstrated that the reliance on increased lipid fueling of BAT was driven by a reduced ability to generate energy from stored lipids within the depot. These alterations arose from impaired autophagosome-lysosome fusion, resulting in increased mitochondria content in beige and BAT. Finally, we show that increased mitochondria content in BAT and postprandial dyslipidemia was partially reversed upon 5-week treatment with recombinant sulfamidase. We hypothesize that increased BAT activity and persistent increases in energy demand in MPS IIIa mice contribute to the negative energy balance observed in patients with MPS IIIa.


Asunto(s)
Hipertrigliceridemia , Mucopolisacaridosis III , Tejido Adiposo Pardo/metabolismo , Animales , Caquexia , Ratones , Mitofagia , Mucopolisacaridosis III/metabolismo , Mucopolisacaridosis III/terapia , Trioleína
3.
Mol Ther ; 25(12): 2743-2752, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-28958576

RESUMEN

Iduronidase (IDUA)-deficient mice accumulate glycosaminoglycans in cells and tissues and exhibit many of the same neuropathological symptoms of patients suffering from Mucopolysaccharidosis I. Intravenous enzyme-replacement therapy for Mucopolysaccharidosis I ameliorates glycosaminoglycan storage and many of the somatic aspects of the disease but fails to treat neurological symptoms due to poor transport across the blood-brain barrier. In this study, we examined the delivery of IDUA conjugated to guanidinoneomycin (GNeo), a molecular transporter. GNeo-IDUA and IDUA injected intravenously resulted in reduced hepatic glycosaminoglycan accumulation but had no effect in the brain due to fast clearance from the circulation. In contrast, intranasally administered GNeo-IDUA entered the brain rapidly. Repetitive intranasal treatment with GNeo-IDUA reduced glycosaminoglycan storage, lysosome size and number, and neurodegenerative astrogliosis in the olfactory bulb and primary somatosensory cortex, whereas IDUA was less effective. The enhanced efficacy of GNeo-IDUA was not the result of increased nose-to-brain delivery or enzyme stability, but rather due to more efficient uptake into neurons and astrocytes. GNeo conjugation also enhanced glycosaminoglycan clearance by intranasally delivered sulfamidase to the brain of sulfamidase-deficient mice, a model of Mucopolysaccharidosis IIIA. These findings suggest the general utility of the guanidinoglycoside-based delivery system for restoring missing lysosomal enzymes in the brain.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Iduronidasa/administración & dosificación , Neomicina/administración & dosificación , Administración Intranasal , Animales , Biomarcadores , Encéfalo/patología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Terapia de Reemplazo Enzimático , Gliosis/metabolismo , Gliosis/patología , Glicosaminoglicanos/metabolismo , Humanos , Hidrolasas , Hígado/efectos de los fármacos , Hígado/metabolismo , Lisosomas , Ratones , Ratones Noqueados , Neuronas/metabolismo
4.
J Biol Chem ; 290(16): 10256-73, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25737452

RESUMEN

Protein O-mannosylation is a glycan modification that is required for normal nervous system development and function. Mutations in genes involved in protein O-mannosyl glycosylation give rise to a group of neurodevelopmental disorders known as congenital muscular dystrophies (CMDs) with associated CNS abnormalities. Our previous work demonstrated that receptor protein-tyrosine phosphatase ζ (RPTPζ)/phosphacan is hypoglycosylated in a mouse model of one of these CMDs, known as muscle-eye-brain disease, a disorder that is caused by loss of an enzyme (protein O-mannose ß-1,2-N-acetylglucosaminyltransferase 1) that modifies O-mannosyl glycans. In addition, monoclonal antibodies Cat-315 and 3F8 were demonstrated to detect O-mannosyl glycan modifications on RPTPζ/phosphacan. Here, we show that O-mannosyl glycan epitopes recognized by these antibodies define biochemically distinct glycoforms of RPTPζ/phosphacan and that these glycoforms differentially decorate the surface of distinct populations of neural cells. To provide a further structural basis for immunochemically based glycoform differences, we characterized the O-linked glycan heterogeneity of RPTPζ/phosphacan in the early postnatal mouse brain by multidimensional mass spectrometry. Structural characterization of the O-linked glycans released from purified RPTPζ/phosphacan demonstrated that this protein is a significant substrate for protein O-mannosylation and led to the identification of several novel O-mannose-linked glycan structures, including sulfo-N-acetyllactosamine containing modifications. Taken together, our results suggest that specific glycan modifications may tailor the function of this protein to the unique needs of specific cells. Furthermore, their absence in CMDs suggests that hypoglycosylation of RPTPζ/phosphacan may have different functional consequences in neurons and glia.


Asunto(s)
Encéfalo/enzimología , N-Acetilglucosaminiltransferasas/genética , Neuroglía/enzimología , Neuronas/enzimología , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/química , Síndrome de Walker-Warburg/genética , Amino Azúcares/química , Amino Azúcares/metabolismo , Animales , Animales Recién Nacidos , Anticuerpos Monoclonales/química , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Secuencia de Carbohidratos , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica , Glicosilación , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Manosa/química , Manosa/metabolismo , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , N-Acetilglucosaminiltransferasas/deficiencia , Neuroglía/patología , Neuronas/patología , Especificidad de Órganos , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Transducción de Señal , Síndrome de Walker-Warburg/enzimología , Síndrome de Walker-Warburg/patología
5.
J Neurooncol ; 120(1): 63-72, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25052349

RESUMEN

Growing evidence supports the important role of the tumor microenvironment (TME) in cancer biology. A defining aspect of the glioma TME is the unique composition and structure of its extracellular matrix (ECM), which enables tumor cells to overcome the inhibitory barriers of the adult central nervous system (CNS). In this way, the TME plays a role in glioma invasion and the cellular heterogeneity that distinguishes these tumors. Brain Enriched Hyaluronan Binding (BEHAB)/brevican (B/b), is a CNS-specific ECM constituent and is upregulated in the glioma TME. Previous studies have shown B/b exerts a pro-invasive function, suggesting it may represent a target to reduce glioma pathogenesis. Herein, we also provide evidence that B/b expression is enriched in the glioma initiating cell (GIC) niche. We demonstrate that B/b plays roles in the pathological progression, aggressiveness, and lethality of tumors derived from human GICs and traditional glioma cell lines. Interestingly, we found that B/b is not required to maintain the defining phenotypic properties of GICs and thereby acts primarily in late stages of glioma progression. This study suggests that the increased expression of B/b in the TME is a valuable therapeutic target for glioma.


Asunto(s)
Neoplasias Encefálicas/patología , Encéfalo/patología , Brevicano/antagonistas & inhibidores , Glioma/patología , Células Madre Neoplásicas/patología , Adulto , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Brevicano/genética , Brevicano/metabolismo , Diferenciación Celular , Supervivencia Celular , Matriz Extracelular , Femenino , Glioma/metabolismo , Glioma/mortalidad , Humanos , Células Madre Neoplásicas/metabolismo , Pronóstico , ARN Interferente Pequeño/genética , Ratas , Ratas Endogámicas Lew , Tasa de Supervivencia , Células Tumorales Cultivadas
6.
Mol Imaging Biol ; 24(6): 940-949, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35655109

RESUMEN

PURPOSE: The treatment of complex neurological diseases often requires the administration of large therapeutic drugs, such as antisense oligonucleotide (ASO), by lumbar puncture into the intrathecal space in order to bypass the blood-brain barrier. Despite the growing number of ASOs in clinical development, there are still uncertainties regarding their dosing, primarily around their distribution and kinetics in the brain following intrathecal injection. The challenge of taking measurements within the delicate structures of the central nervous system (CNS) necessitates the use of non-invasive nuclear imaging, such as positron emission tomography (PET). Herein, an emergent strategy known as "pretargeted imaging" is applied to image the distribution of an ASO in the brain by developing a novel PET tracer, [18F]F-537-Tz. This tracer is able to undergo an in vivo "click" reaction, covalently binding to a trans-cyclooctene conjugated ASO. PROCEDURES: A novel small molecule tracer for pretargeted PET imaging of ASOs in the CNS is developed and tested in a series of in vitro and in vivo experiments, including biodistribution in rats and non-human primates. RESULTS: In vitro data and extensive in vivo rat data demonstrated delivery of the tracer to the CNS, and its successful ligation to its ASO target in the brain. In an NHP study, the slow tracer kinetics did not allow for specific binding to be determined by PET. CONCLUSION: A CNS-penetrant radioligand for pretargeted imaging was successfully demonstrated in a proof-of-concept study in rats, laying the groundwork for further optimization.


Asunto(s)
Química Clic , Radiofármacos , Animales , Ratas , Química Clic/métodos , Radiofármacos/química , Distribución Tisular , Oligonucleótidos Antisentido/metabolismo , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
7.
Mol Ther Nucleic Acids ; 26: 813-827, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34729250

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is one of the most prevalent skeletal muscle dystrophies. Skeletal muscle pathology in individuals with FSHD is caused by inappropriate expression of the transcription factor DUX4, which activates different myotoxic pathways. At the moment there is no molecular therapy that can delay or prevent skeletal muscle wasting in FSHD. In this study, a systemically delivered antisense oligonucleotide (ASO) targeting the DUX4 transcript was tested in vivo in ACTA1-MCM;FLExDUX4 mice that express DUX4 in skeletal muscles. We show that the DUX4 ASO was well tolerated and repressed the DUX4 transcript, DUX4 protein, and mouse DUX4 target gene expression in skeletal muscles. In addition, the DUX4 ASO alleviated the severity of skeletal muscle pathology and partially prevented the dysregulation of inflammatory and extracellular matrix genes. DUX4 ASO-treated ACTA1-MCM;FLExDUX4 mice performed better on a treadmill; however, the hanging grid and four-limb grip strength tests were not improved compared to control ASO-treated ACTA1-MCM;FLExDUX4 mice. This study shows that systemic delivery of ASOs targeting DUX4 is a promising therapeutic strategy for FSHD and strategies that further improve the ASO efficacy in skeletal muscle are warranted.

8.
Nat Biotechnol ; 39(12): 1529-1536, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385691

RESUMEN

Achieving regulation of endogenous gene expression in the central nervous system (CNS) with antisense oligonucleotides (ASOs) administered systemically would facilitate the development of ASO-based therapies for neurological diseases. We demonstrate that DNA/RNA heteroduplex oligonucleotides (HDOs) conjugated to cholesterol or α-tocopherol at the 5' end of the RNA strand reach the CNS after subcutaneous or intravenous administration in mice and rats. The HDOs distribute throughout the brain, spinal cord and peripheral tissues and suppress the expression of four target genes by up to 90% in the CNS, whereas single-stranded ASOs conjugated to cholesterol have limited activity. Gene knockdown was observed in major CNS cell types and was greatest in neurons and microglial cells. Side effects, such as thrombocytopenia and focal brain necrosis, were limited by using subcutaneous delivery or by dividing intravenous injections. By crossing the blood-brain barrier more effectively, cholesterol-conjugated HDOs may overcome the limited efficacy of ASOs targeting the CNS without requiring intrathecal administration.


Asunto(s)
Barrera Hematoencefálica , ARN , Animales , Sistema Nervioso Central/metabolismo , Colesterol/metabolismo , ADN/metabolismo , Ratones , Oligonucleótidos/metabolismo , Oligonucleótidos Antisentido/uso terapéutico , ARN/metabolismo , Ratas , Roedores
9.
J Med Chem ; 63(15): 8471-8484, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32677436

RESUMEN

Despite recent advances, targeted delivery of therapeutic oligonucleotide to extra-hepatic tissues continues to be a challenging endeavor and efficient ligand-receptor systems need to be identified. To determine the feasibility of using neurotensin to improve the productive uptake of antisense oligonucleotides (ASO), we synthesized neurotensin-ASO conjugates and evaluated their cellular uptake and activity in cells and in mice. We performed a comprehensive structure-activity relationship study of the conjugates and determined the influence of ASO charge, ASO length, peptide charge, linker chemistry and ligand identity on receptor binding and internalization. We identified a modified neurotensin peptide capable of improving the cellular uptake and activity of gapmer ASOs in sortilin expressing cells (sixfold) and in spinal cord in mice (twofold). Neurotensin conjugation also improved the potency of morpholino ASO designed to correct splicing of survival motor neuron pre-mRNA in the cortex and striatum after intracerebroventricular injection. Neurotensin-mediated targeted delivery represents a possible approach for enhancing the potency of ASOs with diverse nucleic acid modifications.


Asunto(s)
Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Neurotensina/química , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/farmacocinética , Animales , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Morfolinos/administración & dosificación , Morfolinos/química , Morfolinos/farmacocinética , Oligonucleótidos Antisentido/química
10.
Sci Rep ; 7: 46576, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28418018

RESUMEN

Sanfilippo syndrome, MPS IIIA-D, results from deficits in lysosomal enzymes that specifically degrade heparan sulfate, a sulfated glycosaminoglycan. The accumulation of heparan sulfate results in neurological symptoms, culminating in extensive neurodegeneration and early death. To study the impact of storage in postnatal neurodevelopment, we examined murine models of MPS IIIA, which lack the enzyme sulfamidase. We show that changes occur in excitatory postsynaptic structure and function in the somatosensory cortex prior to signs of neurodegeneration. These changes coincide with accumulation of heparan sulfate with characteristic non-reducing ends, which is present at birth in the mutant mice. Accumulation of heparan sulfate was also detected in primary cultures of cortical neural cells, especially astrocytes. Accumulation of heparan sulfate in cultured astrocytes corresponded with augmented extracellular heparan sulfate and glypican 4 levels. Heparan sulfate from the cerebral cortex of MPS IIIA mice showed enhanced ability to increase glutamate AMPA receptor subunits at the cell surface of wild type neurons. These data support the idea that abnormalities in heparan sulfate content and distribution contribute to alterations in postsynaptic function. Our findings identify a disease-induced developmental phenotype that temporally overlaps with the onset of behavioral changes in a mouse model of MPS IIIA.


Asunto(s)
Corteza Cerebral/metabolismo , Heparitina Sulfato/metabolismo , Mucopolisacaridosis III/metabolismo , Animales , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Heparitina Sulfato/genética , Ratones , Ratones Noqueados , Mucopolisacaridosis III/genética , Mucopolisacaridosis III/patología , Receptores AMPA/genética , Receptores AMPA/metabolismo
11.
Mol Aspects Med ; 51: 104-14, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27418189

RESUMEN

Idiopathic autism spectrum disorders (ASDs) are neurodevelopmental disorders with unknown etiology. An estimated 1:68 children in the U.S. are diagnosed with ASDs, making these disorders a substantial public health issue. Recent advances in genome sequencing have identified numerous genetic variants across the ASD patient population. Many genetic variants identified occur in genes that encode glycosylated extracellular proteins (proteoglycans or glycoproteins) or enzymes involved in glycosylation (glycosyltransferases and sulfotransferases). It remains unknown whether "glycogene" variants cause changes in glycosylation and whether they contribute to the etiology and pathogenesis of ASDs. Insights into glycan susceptibility factors are provided by studies in the normal brain and congenital disorders of glycosylation, which are often accompanied by ASD-like behaviors. The purpose of this review is to present evidence that supports a contribution of extracellular glycans and glycoconjugates to the etiology and pathogenesis of idiopathic ASDs and other types of pervasive neurodevelopmental disorders.


Asunto(s)
Trastorno del Espectro Autista , Glicoconjugados , Polisacáridos , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Encéfalo/metabolismo , Química Encefálica/genética , Glicoconjugados/química , Glicoconjugados/genética , Glicoconjugados/metabolismo , Glicosilación , Humanos , Modelos Moleculares , Polisacáridos/química , Polisacáridos/genética , Polisacáridos/metabolismo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA