Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Biol Chem ; 296: 100170, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33298525

RESUMEN

Elongin is an RNA polymerase II (RNAPII)-associated factor that has been shown to stimulate transcriptional elongation in vitro. The Elongin complex is thought to be required for transcriptional induction in response to cellular stimuli and to ubiquitinate RNAPII in response to DNA damage. Yet, the impact of the Elongin complex on transcription in vivo has not been well studied. Here, we performed comprehensive studies of the role of Elongin A, the largest subunit of the Elongin complex, on RNAPII transcription genome-wide. Our results suggest that Elongin A localizes to actively transcribed regions and potential enhancers, and the level of recruitment correlated with transcription levels. We also identified a large group of factors involved in transcription as Elongin A-associated factors. In addition, we found that loss of Elongin A leads to dramatically reduced levels of serine2-phosphorylated, but not total, RNAPII, and cells depleted of Elongin A show stronger promoter RNAPII pausing, suggesting that Elongin A may be involved in the release of paused RNAPII. Our RNA-seq studies suggest that loss of Elongin A did not alter global transcription, and unlike prior in vitro studies, we did not observe a dramatic impact on RNAPII elongation rates in our cell-based nascent RNA-seq experiments upon Elongin A depletion. Taken together, our studies provide the first comprehensive analysis of the role of Elongin A in regulating transcription in vivo. Our studies also revealed that unlike prior in vitro findings, depletion of Elongin A has little impact on global transcription profiles and transcription elongation in vivo.


Asunto(s)
Cromatina/metabolismo , Elonguina/genética , ARN Polimerasa II/genética , ARN Mensajero/genética , Elongación de la Transcripción Genética , Línea Celular Tumoral , Cromatina/química , Biología Computacional/métodos , Elonguina/antagonistas & inhibidores , Elonguina/metabolismo , Elementos de Facilitación Genéticos , Células Epiteliales/citología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Fosforilación , ARN Polimerasa II/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Análisis de Secuencia de ARN , Serina/metabolismo , Transducción de Señal
2.
PLoS Biol ; 17(2): e3000153, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30807574

RESUMEN

The transcriptional mechanisms driving lineage specification during development are still largely unknown, as the interplay of multiple transcription factors makes it difficult to dissect these molecular events. Using a cell-based differentiation platform to probe transcription function, we investigated the role of the key paraxial mesoderm and skeletal myogenic commitment factors-mesogenin 1 (Msgn1), T-box 6 (Tbx6), forkhead box C1 (Foxc1), paired box 3 (Pax3), Paraxis, mesenchyme homeobox 1 (Meox1), sine oculis-related homeobox 1 (Six1), and myogenic factor 5 (Myf5)-in paraxial mesoderm and skeletal myogenesis. From this study, we define a genetic hierarchy, with Pax3 emerging as the gatekeeper between the presomitic mesoderm and the myogenic lineage. By assaying chromatin accessibility, genomic binding and transcription profiling in mesodermal cells from mouse and human Pax3-induced embryonic stem cells and Pax3-null embryonic day (E)9.5 mouse embryos, we identified conserved Pax3 functions in the activation of the skeletal myogenic lineage through modulation of Hedgehog, Notch, and bone morphogenetic protein (BMP) signaling pathways. In addition, we demonstrate that Pax3 molecular function involves chromatin remodeling of its bound elements through an increase in chromatin accessibility and cooperation with sine oculis-related homeobox 4 (Six4) and TEA domain family member 2 (Tead2) factors. To our knowledge, these data provide the first integrated analysis of Pax3 function, demonstrating its ability to remodel chromatin in mesodermal cells from developing embryos and proving a mechanistic footing for the transcriptional hierarchy driving myogenesis.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/genética , Proteínas de Homeodominio/genética , Mesodermo/metabolismo , Células Musculares/metabolismo , Desarrollo de Músculos/genética , Factor de Transcripción PAX3/genética , Transactivadores/genética , Factores de Transcripción/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Línea Celular , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Mesodermo/citología , Mesodermo/crecimiento & desarrollo , Ratones , Ratones Transgénicos , Células Musculares/citología , Músculo Esquelético/citología , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Factor 5 Regulador Miogénico/genética , Factor 5 Regulador Miogénico/metabolismo , Factor de Transcripción PAX3/metabolismo , Transducción de Señal , Proteínas de Dominio T Box , Factores de Transcripción de Dominio TEA , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
3.
Mol Cell ; 53(6): 979-92, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24656132

RESUMEN

Monomethylation of lysine 4 on histone H3 (H3K4me1) is a well-established feature of enhancers and promoters, although its function is unknown. Here, we uncover roles for H3K4me1 in diverse cell types. Remarkably, we find that MLL3/4 provokes monomethylation of promoter regions and the conditional repression of muscle and inflammatory response genes in myoblasts. During myogenesis, muscle genes are activated, lose MLL3 occupancy, and become H3K4-trimethylated through an alternative COMPASS complex. Monomethylation-mediated repression was not restricted to skeletal muscle. Together with H3K27me3 and H4K20me1, H3K4me1 was associated with transcriptional silencing in embryonic fibroblasts, macrophages, and human embryonic stem cells (ESCs). On promoters of active genes, we find that H3K4me1 spatially demarcates the recruitment of factors that interact with H3K4me3, including ING1, which, in turn, recruits Sin3A. Our findings point to a unique role for H3K4 monomethylation in establishing boundaries that restrict the recruitment of chromatin-modifying enzymes to defined regions within promoters.


Asunto(s)
Cromatina , Regulación del Desarrollo de la Expresión Génica , Histonas/genética , Desarrollo de Músculos/genética , Mioblastos/metabolismo , Animales , Metilación de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Fibroblastos/citología , Fibroblastos/metabolismo , Genoma , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Humanos , Proteína Inhibidora del Crecimiento 1 , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Mioblastos/citología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Complejo Correpresor Histona Desacetilasa y Sin3 , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
4.
Development ; 145(18)2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30224385

RESUMEN

The primary cilium is an antenna-like organelle assembled on most types of quiescent and differentiated mammalian cells. This immotile structure is essential for interpreting extracellular signals that regulate growth, development and homeostasis. As such, ciliary defects produce a spectrum of human diseases, termed ciliopathies, and deregulation of this important organelle also plays key roles during tumor formation and progression. Recent studies have begun to clarify the key mechanisms that regulate ciliary assembly and disassembly in both normal and tumor cells, highlighting new possibilities for therapeutic intervention. Here, we review these exciting new findings, discussing the molecular factors involved in cilium formation and removal, the intrinsic and extrinsic control of cilium assembly and disassembly, and the relevance of these processes to mammalian cell growth and disease.


Asunto(s)
Cilios/metabolismo , Ciliopatías/genética , Neoplasias/patología , Animales , Centriolos/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Crecimiento y Desarrollo/genética , Humanos , Neoplasias/genética , Transducción de Señal
5.
Genes Dev ; 26(24): 2763-79, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23249738

RESUMEN

To identify the compendium of distal regulatory elements that govern myogenic differentiation, we generated chromatin state maps based on histone modifications and recruitment of factors that typify enhancers in myoblasts and myotubes. We found a striking concordance between the locations of these newly defined enhancers, MyoD1-binding events, and noncoding RNA transcripts. These enhancers recruit several sequence-specific transcription factors in a spatially constrained manner around MyoD1-binding sites. Remarkably, MyoD1-null myoblasts show a wholesale loss of recruitment of these factors as well as diminished monomethylation of H3K4 (H3K4me1) and acetylation of H3K27 (H3K27ac) and reduced recruitment of Set7, an H3K4 monomethylase. Surprisingly, we found that H3K4me1, but not H3K27ac, could be restored by re-expression of MyoD1 in MyoD1(-/-) myoblasts, although re-expression of this factor in MyoD1-null myotubes restored both histone modifications. Our studies identified a role for MyoD1 in condition-specific enhancer assembly through recruitment of transcription factors and histone-modifying enzymes that shape muscle differentiation.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Genoma , Músculo Esquelético/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Animales , Diferenciación Celular , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Músculo Esquelético/citología
6.
PLoS Genet ; 12(1): e1005794, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26765774

RESUMEN

The PAF complex (Paf1C) has been shown to regulate chromatin modifications, gene transcription, and RNA polymerase II (PolII) elongation. Here, we provide the first genome-wide profiles for the distribution of the entire complex in mammalian cells using chromatin immunoprecipitation and high throughput sequencing. We show that Paf1C is recruited not only to promoters and gene bodies, but also to regions downstream of cleavage/polyadenylation (pA) sites at 3' ends, a profile that sharply contrasted with the yeast complex. Remarkably, we identified novel, subunit-specific links between Paf1C and regulation of alternative cleavage and polyadenylation (APA) and upstream antisense transcription using RNAi coupled with deep sequencing of the 3' ends of transcripts. Moreover, we found that depletion of Paf1C subunits resulted in the accumulation of PolII over gene bodies, which coincided with APA. Depletion of specific Paf1C subunits led to global loss of histone H2B ubiquitylation, although there was little impact of Paf1C depletion on other histone modifications, including tri-methylation of histone H3 on lysines 4 and 36 (H3K4me3 and H3K36me3), previously associated with this complex. Our results provide surprising differences with yeast, while unifying observations that link Paf1C with PolII elongation and RNA processing, and indicate that Paf1C subunits could play roles in controlling transcript length through suppression of PolII accumulation at transcription start site (TSS)-proximal pA sites and regulating pA site choice in 3'UTRs.


Asunto(s)
Proteínas Portadoras/genética , Poliadenilación/genética , ARN Polimerasa II/genética , Transcripción Genética , Animales , Cromatina/genética , Citocinesis , Metilación de ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/genética , Ratones , Sitio de Iniciación de la Transcripción , Ubiquitinación
7.
Am J Hum Genet ; 93(6): 1061-71, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24268657

RESUMEN

Obesity is a major public health concern, and complementary research strategies have been directed toward the identification of the underlying causative gene mutations that affect the normal pathways and networks that regulate energy balance. Here, we describe an autosomal-recessive morbid-obesity syndrome and identify the disease-causing gene defect. The average body mass index of affected family members was 48.7 (range = 36.7-61.0), and all had features of the metabolic syndrome. Homozygosity mapping localized the disease locus to a region in 3q29; we designated this region the morbid obesity 1 (MO1) locus. Sequence analysis identified a homozygous nonsense mutation in CEP19, the gene encoding the ciliary protein CEP19, in all affected family members. CEP19 is highly conserved in vertebrates and invertebrates, is expressed in multiple tissues, and localizes to the centrosome and primary cilia. Homozygous Cep19-knockout mice were morbidly obese, hyperphagic, glucose intolerant, and insulin resistant. Thus, loss of the ciliary protein CEP19 in humans and mice causes morbid obesity and defines a target for investigating the molecular pathogenesis of this disease and potential treatments for obesity and malnutrition.


Asunto(s)
Proteínas de Ciclo Celular/genética , Silenciador del Gen , Obesidad Mórbida/genética , Adulto , Secuencia de Aminoácidos , Animales , Clonación Molecular , Consanguinidad , Secuencia Conservada , Modelos Animales de Enfermedad , Femenino , Orden Génico , Marcación de Gen , Estudios de Asociación Genética , Ligamiento Genético , Genotipo , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/metabolismo , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Mutación , Obesidad Mórbida/diagnóstico , Linaje , Fenotipo , Mapeo Físico de Cromosoma , Transducción de Señal , Adulto Joven
8.
Mol Cell ; 32(4): 503-18, 2008 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-19026781

RESUMEN

Polycomb group proteins are critical to maintaining gene repression established during Drosophila development. Part of this group forms the PRC2 complex containing Ez that catalyzes di- and trimethylation of histone H3 lysine 27 (H3K37me2/3), marks repressive to transcription. We report that the mammalian homologs Ezh1 and Ezh2 form similar PRC2 complexes but exhibit contrasting repressive roles. While PRC2-Ezh2 catalyzes H3K27me2/3 and its knockdown affects global H3K27me2/3 levels, PRC2-Ezh1 performs this function weakly. In accordance, Ezh1 knockdown was ineffectual on global H3K27me2/3 levels. Instead, PRC2-Ezh1 directly and robustly represses transcription from chromatinized templates and compacts chromatin in the absence of the methyltransferase cofactor SAM, as evidenced by electron microscopy. Ezh1 targets a subset of Ezh2 genes, yet Ezh1 is more abundant in nonproliferative adult organs while Ezh2 expression is tightly associated with proliferation, as evidenced when analyzing aging mouse kidney. These results might reflect subfunctionalization of a PcG protein during evolution.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Factores de Transcripción/metabolismo , Animales , Baculoviridae/genética , Línea Celular , Línea Celular Tumoral , Cromatina/genética , Cromatina/aislamiento & purificación , Cromatina/ultraestructura , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Proteína Potenciadora del Homólogo Zeste 2 , Genes Reporteros , Células HeLa , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Inmunohistoquímica , Células Jurkat , Riñón/citología , Luciferasas/metabolismo , Ratones , Mutación , Células 3T3 NIH , Complejo Represivo Polycomb 2 , Regiones Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Transfección
10.
Curr Opin Cell Biol ; 19(6): 658-62, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18023996

RESUMEN

The E2F family of proteins was identified on the basis of its role in promoting the G0 to S phase transition. Research over the past several years has unveiled considerable complexity within the family, with numerous studies pointing to delegation of function for distinct family members. More recent studies highlighted in this review have expanded this picture, suggesting ways in which E2F target gene expression is refined during cell cycle progression by facilitating the acquisition of promoter-specific histone modifications. E2F associated co-activators promote activating histone marks while recruitment of co-repressors associated with E2Fs and the pRB family leads to accretion of inhibitory histone modifications that provoke chromatin compaction.


Asunto(s)
Ciclo Celular/fisiología , Ensamble y Desensamble de Cromatina , Factores de Transcripción E2F/fisiología , Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Humanos
11.
EMBO Rep ; 13(6): 547-53, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22441691

RESUMEN

Here we identify Neuralized homologue 4 (Neurl4) as a protein that interacts with CP110, a centrosomal protein that regulates centrosome duplication. Neurl4 uses a Neuralized homology repeat to preferentially localize to procentrioles and daughter centrioles. Neurl4 depletion results in ectopic microtubular organizing centres (MTOCs), leading to accumulation of CP110 and recruitment of a cohort of centrosomal proteins. We show that these ectopic MTOCs persist through mitosis and assemble aberrant mitotic spindles. Interestingly, Neurl4 promotes ubiquitylation of CP110, thereby destabilizing this protein. Our results indicate that Neurl4 counteracts accumulation of CP110, thereby maintaining normal centriolar homeostasis and preventing formation of ectopic MTOCs.


Asunto(s)
Proteínas Portadoras/metabolismo , Centriolos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Centriolos/ultraestructura , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Fosfoproteínas/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Interferencia de ARN , Ubiquitina-Proteína Ligasas , Ubiquitinación
12.
Nucleic Acids Res ; 40(9): e70, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22307239

RESUMEN

Numerous algorithms have been developed to analyze ChIP-Seq data. However, the complexity of analyzing diverse patterns of ChIP-Seq signals, especially for epigenetic marks, still calls for the development of new algorithms and objective comparisons of existing methods. We developed Qeseq, an algorithm to detect regions of increased ChIP read density relative to background. Qeseq employs critical novel elements, such as iterative recalibration and neighbor joining of reads to identify enriched regions of any length. To objectively assess its performance relative to other 14 ChIP-Seq peak finders, we designed a novel protocol based on Validation Discriminant Analysis (VDA) to optimally select validation sites and generated two validation datasets, which are the most comprehensive to date for algorithmic benchmarking of key epigenetic marks. In addition, we systematically explored a total of 315 diverse parameter configurations from these algorithms and found that typically optimal parameters in one dataset do not generalize to other datasets. Nevertheless, default parameters show the most stable performance, suggesting that they should be used. This study also provides a reproducible and generalizable methodology for unbiased comparative analysis of high-throughput sequencing tools that can facilitate future algorithmic development.


Asunto(s)
Algoritmos , Inmunoprecipitación de Cromatina , Cromatina/metabolismo , Epigénesis Genética , Análisis de Secuencia de ADN , Animales , Artefactos , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/metabolismo , Ratones
14.
Nat Metab ; 5(2): 277-293, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36747088

RESUMEN

Metabolism is a fundamental cellular process that is coordinated with cell cycle progression. Despite this association, a mechanistic understanding of cell cycle phase-dependent metabolic pathway regulation remains elusive. Here we report the mechanism by which human de novo pyrimidine biosynthesis is allosterically regulated during the cell cycle. Combining traditional synchronization methods and metabolomics, we characterize metabolites by their accumulation pattern during cell cycle phases and identify cell cycle phase-dependent regulation of carbamoyl-phosphate synthetase 2, aspartate transcarbamylase and dihydroorotase (CAD), the first, rate-limiting enzyme in de novo pyrimidine biosynthesis. Through systematic mutational scanning and structural modelling, we find allostery as a major regulatory mechanism that controls the activity change of CAD during the cell cycle. Specifically, we report evidence of two Animalia-specific loops in the CAD allosteric domain that involve sensing and binding of uridine 5'-triphosphate, a CAD allosteric inhibitor. Based on homology with a mitochondrial carbamoyl-phosphate synthetase homologue, we identify a critical role for a signal transmission loop in regulating the formation of a substrate channel, thereby controlling CAD activity.


Asunto(s)
Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante) , Pirimidinas , Humanos , Regulación Alostérica , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/química , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/metabolismo , Ciclo Celular , Pirimidinas/farmacología , Fosfatos
15.
EMBO Rep ; 11(12): 969-76, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20948544

RESUMEN

We have identified the E3 ligase Traf7 as a direct MyoD1 target and show that cell cycle exit-an early event in muscle differentiation-is linked to decreased Traf7 expression. Depletion of Traf7 accelerates myogenesis, in part through downregulation of nuclear factor-κB (NF-κB) activity. We used a proteomic screen to identify NEMO, the NF-κB essential modulator, as a Traf7-interacting protein. Finally, we show that ubiquitylation of NF-κB essential modulator is regulated exclusively by Traf7 activity in myoblasts. Our results suggest a new mechanism by which MyoD1 function is coupled to NF-κB activity through Traf7, regulating the balance between cell cycle progression and differentiation during myogenesis.


Asunto(s)
Desarrollo de Músculos/genética , Proteína MioD/metabolismo , FN-kappa B/metabolismo , Transcripción Genética , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Animales , Ciclo Celular/genética , Diferenciación Celular/genética , Ciclina D1/metabolismo , Regulación de la Expresión Génica , Quinasa I-kappa B/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Mioblastos/citología , Mioblastos/metabolismo , Fosforilación , Unión Proteica , Proteína de Retinoblastoma/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/deficiencia , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
16.
Cell Res ; 32(2): 190-209, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34782749

RESUMEN

Cytoskeletal networks play an important role in regulating nuclear morphology and ciliogenesis. However, the role of microtubule (MT) post-translational modifications in nuclear shape regulation and cilium disassembly has not been explored. Here we identified a novel regulator of the tubulin polyglutamylase complex (TPGC), C11ORF49/CSTPP1, that regulates cytoskeletal organization, nuclear shape, and cilium disassembly. Mechanistically, loss of C11ORF49/CSTPP1 impacts the assembly and stability of the TPGC, which modulates long-chain polyglutamylation levels on microtubules (MTs) and thereby balances the binding of MT-associated proteins and actin nucleators. As a result, loss of TPGC leads to aberrant, enhanced assembly of MTs that penetrate the nucleus, which in turn leads to defects in nuclear shape, and disorganization of cytoplasmic actin that disrupts the YAP/TAZ pathway and cilium disassembly. Further, we showed that C11ORF49/CSTPP1-TPGC plays mechanistically distinct roles in the regulation of nuclear shape and cilium disassembly. Remarkably, disruption of C11ORF49/CSTPP1-TPGC also leads to developmental defects in vivo. Our findings point to an unanticipated nexus that links tubulin polyglutamylation with nuclear shape and ciliogenesis.


Asunto(s)
Actinas , Tubulina (Proteína) , Actinas/metabolismo , Cilios/metabolismo , Microtúbulos/metabolismo , Procesamiento Proteico-Postraduccional , Tubulina (Proteína)/genética
17.
Proc Natl Acad Sci U S A ; 105(3): 955-60, 2008 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-18195366

RESUMEN

Characterization of the transcriptional regulatory network of the normal cell cycle is essential for understanding the perturbations that lead to cancer. However, the complete set of cycling genes in primary cells has not yet been identified. Here, we report the results of genome-wide expression profiling experiments on synchronized primary human foreskin fibroblasts across the cell cycle. Using a combined experimental and computational approach to deconvolve measured expression values into "single-cell" expression profiles, we were able to overcome the limitations inherent in synchronizing nontransformed mammalian cells. This allowed us to identify 480 periodically expressed genes in primary human foreskin fibroblasts. Analysis of the reconstructed primary cell profiles and comparison with published expression datasets from synchronized transformed cells reveals a large number of genes that cycle exclusively in primary cells. This conclusion was supported by both bioinformatic analysis and experiments performed on other cell types. We suggest that this approach will help pinpoint genetic elements contributing to normal cell growth and cellular transformation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Regulación de la Expresión Génica/genética , Genoma Humano/genética , Salud , Neoplasias/genética , Transcripción Genética/genética , Proteínas de Ciclo Celular/clasificación , Células Cultivadas , Biología Computacional , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias/patología
18.
Epigenetics Chromatin ; 14(1): 23, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001241

RESUMEN

BACKGROUND: Selective proteolysis of the histone H3 N-terminal tail (H3NT) is frequently observed during eukaryotic development, generating a cleaved histone H3 (H3cl) product within a small, but significant, portion of the genome. Although increasing evidence supports a regulatory role for H3NT proteolysis in gene activation, the nuclear H3NT proteases and the biological significance of H3NT proteolysis remain largely unknown. RESULTS: In this study, established cell models of skeletal myogenesis were leveraged to investigate H3NT proteolysis. These cells displayed a rapid and progressive accumulation of a single H3cl product within chromatin during myoblast differentiation. Using conventional approaches, we discovered that the canonical extracellular matrix (ECM) protease, matrix metalloproteinase 2 (MMP-2), is the principal H3NT protease of myoblast differentiation that cleaves H3 between K18-Q19. Gelatin zymography demonstrated progressive increases in nuclear MMP-2 activity, concomitant with H3cl accumulation, during myoblast differentiation. RNAi-mediated depletion of MMP-2 impaired H3NT proteolysis and resulted in defective myogenic gene activation and myoblast differentiation. Supplementation of MMP-2 ECM activity in MMP-2-depleted cells was insufficient to rescue defective H3NT proteolysis and myogenic gene activation. CONCLUSIONS: This study revealed that MMP-2 is a novel H3NT protease and the principal H3NT protease of myoblast differentiation. The results indicate that myogenic signaling induces MMP-2-dependent H3NT proteolysis at early stages of myoblast differentiation. Importantly, the results support the necessity of nuclear MMP-2 H3NT protease activity, independent of MMP-2 activity in the ECM, for myogenic gene activation and proficient myoblast differentiation.


Asunto(s)
Histonas , Metaloproteinasa 2 de la Matriz , Animales , Diferenciación Celular , Histonas/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Ratones , Desarrollo de Músculos , Péptido Hidrolasas , Activación Transcripcional
19.
Mol Biol Cell ; 32(2): 169-185, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33206585

RESUMEN

We performed a high-throughput whole-genome RNAi screen to identify novel inhibitors of ciliogenesis in normal and basal breast cancer cells. Our screen uncovered a previously undisclosed, extensive network of genes linking integrin signaling and cellular adhesion to the extracellular matrix (ECM) with inhibition of ciliation in both normal and cancer cells. Surprisingly, a cohort of genes encoding ECM proteins was also identified. We characterized several ciliation inhibitory genes and showed that their silencing was accompanied by altered cytoskeletal organization and induction of ciliation, which restricts cell growth and migration in normal and breast cancer cells. Conversely, supplying an integrin ligand, vitronectin, to the ECM rescued the enhanced ciliation observed on silencing this gene. Aberrant ciliation could also be suppressed through hyperactivation of the YAP/TAZ pathway, indicating a potential mechanistic basis for our findings. Our findings suggest an unanticipated reciprocal relationship between ciliation and cellular adhesion to the ECM and provide a resource that could vastly expand our understanding of controls involving "outside-in" and "inside-out" signaling that restrain cilium assembly.


Asunto(s)
Cilios/genética , Pruebas Genéticas , Genoma Humano , Organogénesis/genética , Transducción de Señal/genética , Actinas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Adhesión Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Matriz Extracelular/metabolismo , Femenino , Adhesiones Focales/metabolismo , Silenciador del Gen , Estudios de Asociación Genética , Humanos , Integrinas/metabolismo , Ligandos , ARN Interferente Pequeño/metabolismo , Supresión Genética
20.
Nat Commun ; 10(1): 2316, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31127120

RESUMEN

Chromatin looping allows enhancer-bound regulatory factors to influence transcription. Large domains, referred to as topologically associated domains, participate in genome organization. However, the mechanisms underlining interactions within these domains, which control gene expression, are not fully understood. Here we report that activation of embryonic myogenesis is associated with establishment of long-range chromatin interactions centered on Pax3-bound loci. Using mass spectrometry and genomic studies, we identify the ubiquitously expressed LIM-domain binding protein 1 (Ldb1) as the mediator of looping interactions at a subset of Pax3 binding sites. Ldb1 is recruited to Pax3-bound elements independently of CTCF-Cohesin, and is necessary for efficient deposition of H3K4me1 at these sites and chromatin looping. When Ldb1 is deleted in Pax3-expressing cells in vivo, specification of migratory myogenic progenitors is severely impaired. These results highlight Ldb1 requirement for Pax3 myogenic activity and demonstrate how transcription factors can promote formation of sub-topologically associated domain interactions involved in lineage specification.


Asunto(s)
Cromosomas de los Mamíferos/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas con Dominio LIM/metabolismo , Desarrollo de Músculos , Factor de Transcripción PAX3/metabolismo , Animales , Diferenciación Celular , Línea Celular , Cromatina/metabolismo , Cromosomas de los Mamíferos/química , Proteínas de Unión al ADN/genética , Embrión de Mamíferos , Femenino , Fibroblastos , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Histonas/metabolismo , Humanos , Proteínas con Dominio LIM/genética , Masculino , Ratones , Ratones Transgénicos , Células Madre Embrionarias de Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA