RESUMEN
The 3'-ends of eukaryotic pre-mRNAs are processed in the nucleus by a large multiprotein complex, the cleavage and polyadenylation factor (CPF). CPF cleaves RNA, adds a poly(A) tail and signals transcription termination. CPF harbors four enzymatic activities essential for these processes, but how these are coordinated remains poorly understood. Several subunits of CPF, including two protein phosphatases, are also found in the related 'associated with Pta1' (APT) complex, but the relationship between CPF and APT is unclear. Here, we show that the APT complex is physically distinct from CPF. The 21 kDa Syc1 protein is associated only with APT, and not with CPF, and is therefore the defining subunit of APT. Using ChIP-seq, PAR-CLIP and RNA-seq, we show that Syc1/APT has distinct, but possibly overlapping, functions from those of CPF. Syc1/APT plays a more important role in sn/snoRNA production whereas CPF processes the 3'-ends of protein-coding pre-mRNAs. These results define distinct protein machineries for synthesis of mature eukaryotic protein-coding and non-coding RNAs.
Asunto(s)
Complejos Multiproteicos/metabolismo , ARN no Traducido/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Inmunoprecipitación de Cromatina , Complejos Multiproteicos/genética , Subunidades de Proteína , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Escisión y Poliadenilación de ARNm/genéticaRESUMEN
Newly transcribed eukaryotic precursor messenger RNAs (pre-mRNAs) are processed at their 3' ends by the ~1-megadalton multiprotein cleavage and polyadenylation factor (CPF). CPF cleaves pre-mRNAs, adds a polyadenylate tail, and triggers transcription termination, but it is unclear how its various enzymes are coordinated and assembled. Here, we show that the nuclease, polymerase, and phosphatase activities of yeast CPF are organized into three modules. Using electron cryomicroscopy, we determined a 3.5-angstrom-resolution structure of the ~200-kilodalton polymerase module. This revealed four ß propellers, in an assembly markedly similar to those of other protein complexes that bind nucleic acid. Combined with in vitro reconstitution experiments, our data show that the polymerase module brings together factors required for specific and efficient polyadenylation, to help coordinate mRNA 3'-end processing.
Asunto(s)
Procesamiento de Término de ARN 3' , ARN Polimerasa II/química , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Factores de Escisión y Poliadenilación de ARNm/química , Microscopía por Crioelectrón , Polinucleotido Adenililtransferasa/metabolismo , Conformación Proteica , ARN Polimerasa II/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Factores de Escisión y Poliadenilación de ARNm/ultraestructuraRESUMEN
At the 3' ends of protein-coding genes, RNA polymerase (Pol) II is dephosphorylated at tyrosine residues (Tyr1) of its C-terminal domain (CTD). In addition, the associated cleavage-and-polyadenylation factor (CPF) cleaves the transcript and adds a poly(a) tail. Whether these events are coordinated and how they lead to transcription termination remains poorly understood. Here we show that CPF from Saccharomyces cerevisiae is a Pol II-CTD phosphatase and that the CPF subunit Glc7 dephosphorylates Tyr1 in vitro. In vivo, the activity of Glc7 is required for normal Tyr1 dephosphorylation at the polyadenylation site, for recruitment of termination factors Pcf11 and Rtt103 and for normal Pol II termination. These results show that transcription termination involves Tyr1 dephosphorylation of the CTD and indicate that pre-mRNA processing by CPF and transcription termination are coupled via Glc7-dependent Pol II-Tyr1 dephosphorylation.
Asunto(s)
Proteína Fosfatasa 1/fisiología , ARN Polimerasa II/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Terminación de la Transcripción Genética , Tirosina/metabolismo , Factores de Escisión y Poliadenilación de ARNm/fisiología , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/fisiología , Fosforilación , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Subunidades de Proteína/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismoRESUMEN
The increase in enzymatic rates with temperature up to an optimum temperature (Topt) is widely attributed to classical Arrhenius behavior, with the decrease in enzymatic rates above Topt ascribed to protein denaturation and/or aggregation. This account persists despite many investigators noting that denaturation is insufficient to explain the decline in enzymatic rates above Topt. Here we show that it is the change in heat capacity associated with enzyme catalysis (ΔC()p) and its effect on the temperature dependence of ΔG() that determines the temperature dependence of enzyme activity. Through mutagenesis, we demonstrate that the Topt of an enzyme is correlated with ΔC()p and that changes to ΔC()p are sufficient to change Topt without affecting the catalytic rate. Furthermore, using X-ray crystallography and molecular dynamics simulations we reveal the molecular details underpinning these changes in ΔC()p. The influence of ΔC()p on enzymatic rates has implications for the temperature dependence of biological rates from enzymes to ecosystems.
Asunto(s)
Simulación de Dinámica Molecular , Termodinámica , alfa-Glucosidasas/química , Catálisis , Cristalografía por Rayos X , Cinética , Desnaturalización Proteica , Temperatura , alfa-Glucosidasas/genéticaRESUMEN
The bacterial relBE locus encodes a toxin-antitoxin complex in which the toxin, RelE, is capable of cleaving mRNA in the ribosomal A site cotranslationally. The antitoxin, RelB, both binds and inhibits RelE, and regulates transcription through operator binding and conditional cooperativity controlled by RelE. Here, we present the crystal structure of the intact Escherichia coli RelB2E2 complex at 2.8 Å resolution, comprising both the RelB-inhibited RelE and the RelB dimerization domain that binds DNA. RelE and RelB associate into a V-shaped heterotetrameric complex with the ribbon-helix-helix (RHH) dimerization domain at the apex. Our structure supports a model in which relO is optimally bound by two adjacent RelB2E heterotrimeric units, and is not compatible with concomitant binding of two RelB2E2 heterotetramers. The results thus provide a firm basis for understanding the model of conditional cooperativity at the molecular level.