Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 587(7833): 252-257, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177665

RESUMEN

Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.


Asunto(s)
Aves/clasificación , Aves/genética , Genoma/genética , Genómica/métodos , Genómica/normas , Filogenia , Animales , Pollos/genética , Conservación de los Recursos Naturales , Conjuntos de Datos como Asunto , Pinzones/genética , Humanos , Selección Genética/genética , Sintenía/genética
2.
Dev Biol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964706

RESUMEN

Terminal differentiation of epithelial cells is critical for the barrier function of the skin, the growth of skin appendages, such as hair and nails, and the development of the skin of amniotes. Here, we present the hypothesis that the differentiation of cells in embryonic periderm shares characteristic features with the differentiation of epithelial cells that support the morphogenesis of cornified skin appendages during postnatal life. The periderm prevents aberrant fusion of adjacent epithelial sites during early skin development. It is shed off when keratinocytes of the epidermis form the cornified layer, the stratum corneum. A similar role is played by epithelia that ensheath cornifying skin appendages until they disintegrate to allow the separation of the mature part of the skin appendage from the adjacent tissue. These epithelia, exemplified by the inner root sheath of hair follicles and the epithelia close to the free edge of nails or claws, are referred to as scaffolding epithelia. The periderm and scaffolding epithelia are similar with regard to their transient functions in separating tissues and the conserved expression of trichohyalin and trichohyalin-like genes in mammals and birds. Thus, we propose that parts of the peridermal differentiation program were coopted to a new postnatal function during the evolution of cornified skin appendages in amniotes.

3.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38781495

RESUMEN

Transglutaminases (TGMs) cross-link proteins by introducing covalent bonds between glutamine and lysine residues. These cross-links are essential for epithelial cornification which enables tetrapods to live on land. Here, we investigated which evolutionary adaptations of vertebrates were associated with specific changes in the family of TGM genes. We determined the catalog of TGMs in the main clades of vertebrates, performed a comprehensive phylogenetic analysis of TGMs, and localized the distribution of selected TGMs in tissues. Our data suggest that TGM1 is the phylogenetically oldest epithelial TGM, with orthologs being expressed in the cornified teeth of the lamprey, a basal vertebrate. Gene duplications led to the origin of TGM10 in stem vertebrates, the origin of TGM2 in jawed vertebrates, and an increasing number of epithelium-associated TGM genes in the lineage leading to terrestrial vertebrates. TGM9 is expressed in the epithelial egg tooth, and its evolutionary origin in stem amniotes coincided with the evolution of embryonic development in eggs that are surrounded by a protective shell. Conversely, viviparous mammals have lost both the epithelial egg tooth and TGM9. TGM3 and TGM6 evolved as regulators of cornification in hair follicles and underwent pseudogenization upon the evolutionary loss of hair in cetaceans. Taken together, this study reveals the gain and loss of vertebrate TGM genes in association with the evolution of cornified skin appendages and suggests an important role of TGM9 in the evolution of amniotes.


Asunto(s)
Evolución Molecular , Filogenia , Transglutaminasas , Vertebrados , Animales , Transglutaminasas/genética , Transglutaminasas/metabolismo , Vertebrados/genética , Evolución Biológica , Piel/metabolismo
4.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36768511

RESUMEN

The cross-linking of structural proteins is critical for establishing the mechanical stability of the epithelial compartments of the skin and skin appendages. The introduction of isopeptide bonds between glutamine and lysine residues depends on catalysis by transglutaminases and represents the main protein cross-linking mechanism besides the formation of disulfide bonds. Here, we used a fluorescent labeling protocol to localize the activity of transglutaminases on thin sections of the integument and its appendages in mammals and birds. In human tissues, transglutaminase activity was detected in the granular layer of the epidermis, suprabasal layers of the gingival epithelium, the duct of sweat glands, hair follicles and the nail matrix. In the skin appendages of chickens, transglutaminase activity was present in the claw matrix, the feather follicle sheath, the feather sheath and in differentiating keratinocytes of feather barb ridges. During chicken embryogenesis, active transglutaminase was found in the cornifying epidermis, the periderm and the subperiderm. Transglutaminase activity was also detected in the filiform papillae on the tongue of mice and in conical papillae on the tongue of chickens. In summary, our study reveals that transglutaminase activities are widely distributed in integumentary structures and suggests that transglutamination contributes to the cornification of hard skin appendages such as nails and feathers.


Asunto(s)
Pollos , Piel , Animales , Humanos , Epidermis , Epitelio , Proteínas , Mamíferos , Transglutaminasas
5.
Immunogenetics ; 74(2): 261-268, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34725731

RESUMEN

NOD-like receptors (NLRs) are sensors of pathogen-associated molecular patterns with critical roles in the control of immune responses and programmed cell death. Recent studies have revealed inter-species differences in mammalian innate immune genes and a particular degeneration of nucleic acid sensing pathways in pangolins, which are currently investigated as potential hosts for zoonotic pathogens. Here, we used comparative genomics to determine which NLR genes are conserved or lost in pangolins and related mammals. We show that NOD2, which is implicated in sensing bacterial muramyl dipeptide and viral RNA, is a pseudogene in pangolins, but not in any other mammalian species investigated. NLRC4 and NAIP are absent in pangolins and canine carnivorans, suggesting convergent loss of cytoplasmic sensing of bacterial flagellin in these taxa. Among NLR family pyrin domain containing proteins (NLRPs), skin barrier-related NLRP10 has been lost in pangolins after the evolutionary divergence from Carnivora. Strikingly, pangolins lack all NLRPs associated with reproduction (germ cells and embryonic development) in other mammals, i.e., NLRP2, 4, 5, 7, 8, 9, 11, 13, and 14. Taken together, our study shows a massive degeneration of NLR genes in pangolins and suggests that these endangered mammals may have unique adaptations of innate immunity and reproductive cell biology.


Asunto(s)
Proteínas NLR , Pangolines , Animales , Perros , Inmunidad Innata/genética , Mamíferos/genética , Proteínas NLR/genética , Reproducción
7.
Mol Biol Evol ; 37(4): 982-993, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31822906

RESUMEN

Terrestrial vertebrates have evolved hard skin appendages, such as scales, claws, feathers, and hair that play crucial roles in defense, predation, locomotion, and thermal insulation. The mechanical properties of these skin appendages are largely determined by cornified epithelial components. So-called "hair keratins," cysteine-rich intermediate filament proteins that undergo covalent cross-linking via disulfide bonds, are the crucial structural proteins of hair and claws in mammals and hair keratin orthologs are also present in lizard claws, indicating an evolutionary origin in a hairless common ancestor of amniotes. Here, we show that reptiles and birds have also other cysteine-rich keratins which lack cysteine-rich orthologs in mammals. In addition to hard acidic (type I) sauropsid-specific (HAS) keratins, we identified hard basic (type II) sauropsid-specific (HBS) keratins which are conserved in lepidosaurs, turtles, crocodilians, and birds. Immunohistochemical analysis with a newly made antibody revealed expression of chicken HBS1 keratin in the cornifying epithelial cells of feathers. Molecular phylogenetics suggested that the high cysteine contents of HAS and HBS keratins evolved independently from the cysteine-rich sequences of hair keratin orthologs, thus representing products of convergent evolution. In conclusion, we propose an evolutionary model in which HAS and HBS keratins evolved as structural proteins in epithelial cornification of reptiles and at least one HBS keratin was co-opted as a component of feathers after the evolutionary divergence of birds from reptiles. Thus, cytoskeletal proteins of hair and feathers are products of convergent evolution and evolutionary co-option to similar biomechanical functions in clade-specific hard skin appendages.


Asunto(s)
Evolución Molecular , Queratinas/genética , Vertebrados/genética , Animales , Cisteína , Plumas/química , Filogenia
8.
Mol Biol Evol ; 36(2): 328-340, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30517738

RESUMEN

Keratins are the main intermediate filament proteins of epithelial cells. In keratinocytes of the mammalian epidermis they form a cytoskeleton that resists mechanical stress and thereby are essential for the function of the skin as a barrier against the environment. Here, we performed a comparative genomics study of epidermal keratin genes in terrestrial and fully aquatic mammals to determine adaptations of the epidermal keratin cytoskeleton to different environments. We show that keratins K5 and K14 of the innermost (basal), proliferation-competent layer of the epidermis are conserved in all mammals investigated. In contrast, K1 and K10, which form the main part of the cytoskeleton in the outer (suprabasal) layers of the epidermis of terrestrial mammals, have been lost in whales and dolphins (cetaceans) and in the manatee. Whereas in terrestrial mammalian epidermis K6 and K17 are expressed only upon stress-induced epidermal thickening, high levels of K6 and K17 are consistently present in dolphin skin, indicating constitutive expression and substitution of K1 and K10. K2 and K9, which are expressed in a body site-restricted manner in human and mouse suprabasal epidermis, have been lost not only in cetaceans and manatee but also in some terrestrial mammals. The evolution of alternative splicing of K10 and differentiation-dependent upregulation of K23 have increased the complexity of keratin expression in the epidermis of terrestrial mammals. Taken together, these results reveal evolutionary diversification of the epidermal cytoskeleton in mammals and suggest a complete replacement of the quantitatively predominant epidermal proteins of terrestrial mammals by originally stress-inducible keratins in cetaceans.


Asunto(s)
Evolución Biológica , Diferenciación Celular , Cetáceos/genética , Queratinocitos/fisiología , Queratinas/genética , Sirenia/genética , Secuencia de Aminoácidos , Animales , Genómica , Humanos , Queratinocitos/citología
9.
Apoptosis ; 25(7-8): 474-480, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32533513

RESUMEN

The release of DNA into the cytoplasm upon damage to the nucleus or during viral infection triggers an interferon-mediated defense response, inflammation and cell death. In human cells cytoplasmic DNA is sensed by cyclic GMP-AMP Synthase (cGAS) and Absent In Melanoma 2 (AIM2). Here, we report the identification of a "natural knockout" model of cGAS. Comparative genomics of phylogenetically diverse mammalian species showed that cGAS and its interaction partner Stimulator of Interferon Genes (STING) have been inactivated by mutations in the Malayan pangolin whereas other mammals retained intact copies of these genes. The coding sequences of CGAS and STING1 are also disrupted by premature stop codons and frame-shift mutations in Chinese and tree pangolins, suggesting that expression of these genes was lost in a common ancestor of all pangolins that lived more than 20 million years ago. AIM2 is retained in a functional form in pangolins whereas it is inactivated by mutations in carnivorans, the phylogenetic sister group of pangolins. The deficiency of cGAS and STING points to the existence of alternative mechanisms of controlling cytoplasmic DNA-associated cell damage and viral infections in pangolins.


Asunto(s)
Proteínas de Unión al ADN/genética , ADN/genética , Factores Reguladores del Interferón/genética , Proteínas de la Membrana/genética , Nucleotidiltransferasas/genética , Pangolines/genética , Animales , Secuencia de Bases , Gatos , China , Codón de Terminación , Citosol/inmunología , Citosol/metabolismo , ADN/inmunología , Proteínas de Unión al ADN/inmunología , Regulación de la Expresión Génica , Humanos , Inmunidad Innata , Factores Reguladores del Interferón/deficiencia , Factores Reguladores del Interferón/inmunología , Malasia , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/inmunología , Mutación , Nucleotidiltransferasas/deficiencia , Nucleotidiltransferasas/inmunología , Pangolines/inmunología , Filogenia , Especificidad de la Especie
10.
Exp Dermatol ; 29(4): 376-379, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32012357

RESUMEN

Long non-coding RNAs have been implicated in the regulation of a plethora of biological processes, yet it has been challenging to verify that they are truly not coding for proteins. Terminal differentiation-induced non-coding RNA (TINCR) is a 3.7-kilobase mRNA that is highly abundant in epidermal keratinocytes prior to cornification. Here, we report the presence of an evolutionarily conserved open reading frame in TINCR and the identification of peptides derived from this open reading frame in the proteome of human stratum corneum. Our results demonstrate that TINCR is a protein-coding RNA and suggest that the TINCR-encoded protein is involved in keratinocyte cornification.


Asunto(s)
Células Epidérmicas/metabolismo , Epidermis/metabolismo , Queratinocitos/citología , ARN Largo no Codificante/metabolismo , Piel/metabolismo , Evolución Biológica , Diferenciación Celular , Humanos , Espectrometría de Masas , Sistemas de Lectura Abierta , Péptidos/química , ARN Largo no Codificante/genética , ARN Mensajero/metabolismo , Transcripción Genética , Ubiquitina/metabolismo
11.
Apoptosis ; 24(1-2): 62-73, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30552537

RESUMEN

Epidermal keratinocytes undergo cornification to form the cellular building blocks of hard skin appendages such as nails and the protective layer on the surface of the skin. Cornification requires the cross-linking of structural proteins and the removal of other cellular components to form mechanically rigid and inert corneocytes. Autophagy has been proposed to contribute to this intracellular remodelling process, but its molecular targets in keratinocytes, if any, have remained elusive. Here, we deleted the essential autophagy factor Atg7 in K14-positive epithelia of mice and determined by proteomics the impact of this deletion on the abundance of individual proteins in cornified nails. The genetic suppression of autophagy in keratinocytes resulted in a significant increase in the number of proteins that survived cornification and in alterations of their abundance in the nail proteome. A broad range of enzymes and other non-structural proteins were elevated whereas the amounts of cytoskeletal proteins of the keratin and keratin-associated protein families, cytolinker proteins and desmosomal proteins were either unaltered or decreased in nails of mice lacking epithelial autophagy. Among the various types of non-cytoskeletal proteins, the subunits of the proteasome and of the TRiC/CCT chaperonin were most strongly elevated in mutant nails, indicating a particularly important role of autophagy in removing these large protein complexes during normal cornification. Taken together, the results of this study suggest that autophagy is active during nail keratinocyte cornification and its substrate specificity depends on the accessibility of proteins outside of the cytoskeleton and their presence in large complexes.


Asunto(s)
Autofagia/fisiología , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Pezuñas y Garras/fisiología , Queratinocitos/fisiología , Organogénesis/fisiología , Proteolisis , Animales , Diferenciación Celular/genética , Epidermis/fisiología , Espacio Intracelular/metabolismo , Queratinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Piel/metabolismo
12.
J Exp Zool B Mol Dev Evol ; 330(8): 438-453, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30637919

RESUMEN

In all amniotes specialized intermediate filament keratins (IF-keratins), in addition to keratin-associated and corneous proteins form the outermost cornified layer of the epidermis. Only in reptiles and birds (sauropsids) the epidermis of scales, claws, beaks, and feathers, largely comprises small proteins formerly indicated as "beta-keratins" but here identified as corneous beta-proteins (CBPs) to avoid confusion with true keratins. Genes coding for CBPs have evolved within the epidermal differentiation complex (EDC), a locus with no relationship with those of IF-keratins. CBP genes have the same exon-intron structure as EDC genes encoding other corneous proteins of sauropsids and mammals, but they are unique by encoding a peculiar internal amino acid sequence motif beta-sheet region that allows formation of CBP filaments in the epidermis and epidermal appendages of reptiles and birds. In contrast, skin appendages of mammals, like hairs, claws, horns and nails, contain keratin-associated proteins that, like IF-keratin genes, are encoded by genes in loci different from the EDC. Phylogenetic analysis shows that lepidosaurian (lizards and snakes) and nonlepidosaurian (crocodilians, birds, and turtles) CBPs form two separate clades that likely originated after the divergence of these groups of sauropsids in the Permian Period. Clade-specific CBPs evolved to make most of the corneous material of feathers in birds and of the shell in turtles. Based on the recent identification of the complete sets of CBPs in all major phylogenetic clades of sauropsids, this review provides a comprehensive overview of the molecular evolution of CBPs.


Asunto(s)
Evolución Biológica , Aves/metabolismo , Epidermis/metabolismo , Reptiles/metabolismo , beta-Queratinas/metabolismo , Animales , Aves/genética , Regulación de la Expresión Génica , Reptiles/genética , beta-Queratinas/genética
13.
Exp Dermatol ; 27(8): 884-891, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29862564

RESUMEN

The function of the skin as a barrier to the environment is mainly achieved by the outermost layers of the epidermis. In the granular layer, epidermal keratinocytes undergo the last steps of their terminal differentiation program resulting in cornification. The coordinated conversion of living keratinocytes into corneocytes, the building blocks of the cornified layer, represents a unique form of programmed cell death. Recent studies have identified numerous genes that are specifically expressed in terminally differentiated keratinocytes and, surprisingly, this genetic program does not only include mediators of cornification but also suppressors of pyroptosis, another mode of programmed cell death. Pyroptosis is activated by inflammasomes, leads to the release of interleukin-1 (IL-1) family cytokines, and thereby activates inflammation. In addition, inhibitors of potentially pro-inflammatory proteases and enzymes removing danger-associated cytoplasmic DNA are expressed in differentiated keratinocytes. We propose the concept of cornification as an inherently hazardous process in which damaging side effects are actively suppressed by protective mechanisms. In support of this hypothesis, loss-of-function mutations in epidermal protease inhibitors and IL-1 family antagonists suffice to induce autoinflammation. Similarly, exogenous disturbances of either cornification or its accompanying control mechanisms may be starting points for skin inflammation. Further studies into the relationship between cornification, pyroptosis and other forms of cell death will help to define the initiation phase of inflammatory skin diseases and offer new targets for disease prevention and therapy.


Asunto(s)
Apoptosis , Células Epidérmicas/metabolismo , Epidermis/metabolismo , Epidermis/patología , Queratinocitos/metabolismo , Neoplasias Cutáneas/metabolismo , Fenómenos Fisiológicos de la Piel , Animales , Diferenciación Celular , Citoplasma/metabolismo , ADN/análisis , Homeostasis , Humanos , Inflamación , Ratones , Modelos Teóricos , Piel/metabolismo
14.
Exp Dermatol ; 27(10): 1142-1151, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30033522

RESUMEN

We have reported recently that inactivation of the essential autophagy-related gene 7 (Atg7) in keratinocytes has little or no impact on morphology and function of the epidermal barrier in experimental animals. When these mice aged, mutant males, (Atg7 ΔKC), developed an oily coat. As the keratin 14 promoter driven cre/LoxP system inactivates floxed Atg7 in all keratin 14 (K14) expressing cells, including sebocytes, we investigated whether the oily hair phenotype was the consequence of changes in function of the skin sebaceous glands. Using an antibody to the GFP-LC3 fusion protein, autophagosomes were detected at the border of sebocyte disintegration in control but not in mutant animals, suggesting that autophagy was (a) active in normal sebaceous glands and (b) was inactivated in the mutant mice. Detailed analysis established that dorsal sebaceous glands were about twice as large in all Atg7 ΔKC mice compared to those of controls (Atg7 F/F), and their rate of sebocyte proliferation was increased. In addition, male mutant mice yielded twice as much lipid per unit hair as age-matched controls. Analysis of sebum lipids by thin layer chromatography revealed a 40% reduction in the proportion of free fatty acids (FFA) and cholesterol, and a 5-fold increase in the proportion of fatty acid methyl esters (FAME). In addition, the most common diester wax species (58-60 carbon atoms) were increased, while shorter species (54-55 carbon atoms) were under-represented in mutant sebum. Our data show that autophagy contributes to sebaceous gland function and to the control of sebum composition.


Asunto(s)
Proteína 7 Relacionada con la Autofagia/genética , Autofagia/genética , Glándulas Sebáceas/patología , Glándulas Sebáceas/fisiopatología , Sebo/química , Animales , Autofagosomas , Proliferación Celular/genética , Colesterol/análisis , Ácidos Grasos no Esterificados/análisis , Cabello , Masculino , Ratones , Fenotipo , Ceras/análisis
15.
Adv Exp Med Biol ; 1054: 33-45, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29797266

RESUMEN

The evolution of keratins was closely linked to the evolution of epithelia and epithelial appendages such as hair. The characterization of keratins in model species and recent comparative genomics studies have led to a comprehensive scenario for the evolution of keratins including the following key events. The primordial keratin gene originated as a member of the ancient gene family encoding intermediate filament proteins. Gene duplication and changes in the exon-intron structure led to the origin of type I and type II keratins which evolved further by nucleotide sequence modifications that affected both the amino acid sequences of the encoded proteins and the gene expression patterns. The diversification of keratins facilitated the emergence of new and epithelium type-specific properties of the cytoskeleton. In a common ancestor of reptiles, birds, and mammals, a rise in the number of cysteine residues facilitated extensive disulfide bond-mediated cross-linking of keratins in claws. Subsequently, these cysteine-rich keratins were co-opted for an additional function in epidermal follicular structures that evolved into hair, one of the key events in the evolution of mammals. Further diversification of keratins occurred during the evolution of the complex multi-layered organisation of hair follicles. Thus, together with the evolution of other structural proteins, epithelial patterning mechanisms, and development programmes, the evolution of keratins underlied the evolution of the mammalian integument.


Asunto(s)
Evolución Molecular , Queratinas/química , Secuencia de Aminoácidos , Animales , Epidermis/química , Cabello/química
16.
Mol Biol Evol ; 33(3): 726-37, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26601937

RESUMEN

The evolution of reptiles, birds, and mammals was associated with the origin of unique integumentary structures. Studies on lizards, chicken, and humans have suggested that the evolution of major structural proteins of the outermost, cornified layers of the epidermis was driven by the diversification of a gene cluster called Epidermal Differentiation Complex (EDC). Turtles have evolved unique defense mechanisms that depend on mechanically resilient modifications of the epidermis. To investigate whether the evolution of the integument in these reptiles was associated with specific adaptations of the sequences and expression patterns of EDC-related genes, we utilized newly available genome sequences to determine the epidermal differentiation gene complement of turtles. The EDC of the western painted turtle (Chrysemys picta bellii) comprises more than 100 genes, including at least 48 genes that encode proteins referred to as beta-keratins or corneous beta-proteins. Several EDC proteins have evolved cysteine/proline contents beyond 50% of total amino acid residues. Comparative genomics suggests that distinct subfamilies of EDC genes have been expanded and partly translocated to loci outside of the EDC in turtles. Gene expression analysis in the European pond turtle (Emys orbicularis) showed that EDC genes are differentially expressed in the skin of the various body sites and that a subset of beta-keratin genes within the EDC as well as those located outside of the EDC are expressed predominantly in the shell. Our findings give strong support to the hypothesis that the evolutionary innovation of the turtle shell involved specific molecular adaptations of epidermal differentiation.


Asunto(s)
Exoesqueleto , Evolución Biológica , Epidermis , Genoma , Genómica , Proteínas/genética , Tortugas/genética , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Epidermis/metabolismo , Evolución Molecular , Duplicación de Gen , Regulación de la Expresión Génica , Genómica/métodos , Familia de Multigenes , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos , Translocación Genética , Tortugas/clasificación
17.
Exp Dermatol ; 26(10): 955-957, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28191671

RESUMEN

The expression of filaggrin in differentiated keratinocytes and the association of filaggrin mutations with ichthyosis vulgaris and atopic dermatitis suggest that this prototypical member of the S100 fused-type protein (SFTP) family plays a key role in the epidermal barrier to the environment. Here, we report that SFTP genes are present not only in amniotes but also in amphibians. Four SFTPs are expressed in the skin of the frog Xenopus laevis. The results of this study indicate that filaggrin has evolved from an ancestral SFTP that may have contributed to skin modifications during the evolutionary transition to terrestrial life.


Asunto(s)
Evolución Molecular , Proteínas de Filamentos Intermediarios/química , Proteínas de Filamentos Intermediarios/genética , Proteínas S100/química , Proteínas S100/genética , Animales , Proteínas Filagrina , Genómica , Humanos , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de Proteína , Xenopus laevis
18.
Exp Dermatol ; 26(4): 352-358, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27943452

RESUMEN

PSORS1C2 is a gene located between coiled-coil alpha-helical rod protein 1 (CCHCR1) and corneodesmosin (CDSN) within the psoriasis susceptibility locus 1 (PSORS1). Here, we performed a comparative genomics analysis of the as-yet incompletely characterized PSORS1C2 gene and determined its expression pattern in human tissues. In contrast to CCHCR1, which is common to all vertebrates investigated, PSORS1C2 and CDSN are present exclusively in mammals, indicating that the latter genes have originated after the evolutionary divergence of mammals and reptiles. CDSN is conserved in aquatic mammals, whereas PSORS1C2 orthologs contain gene-inactivating frame shift mutations in whales and dolphins, in which the epidermal differentiation programme has degenerated. Reverse-transcription PCR screening demonstrated that, in human tissues, PSORS1C2 is expressed principally in the epidermis and weakly in the thymus. PSORS1C2 mRNA was strongly upregulated during terminal differentiation of human keratinocytes in vitro. Immunohistochemistry revealed exclusive expression of PSORS1C2 in the granular layer of the epidermis and in cornifying epithelial cells of Hassall's corpuscles of the thymus. In summary, our results identify PSORS1C2 as a keratinocyte cornification-associated protein that has originated in evolutionarily basal mammals and has undergone gene inactivation in association with the loss of the skin barrier function in aquatic mammals.


Asunto(s)
Diferenciación Celular/genética , Expresión Génica , Queratinocitos/fisiología , Mamíferos/genética , ARN Mensajero/metabolismo , Animales , Delfín Mular/genética , Bovinos/genética , Bases de Datos Genéticas , Epidermis/metabolismo , Células Epiteliales/metabolismo , Genómica , Glicoproteínas/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular , Marsupiales/genética , Proteínas de la Membrana/genética , Zarigüeyas/genética , Filogenia , Proteínas , Cachalote/genética , Timo/metabolismo , Regulación hacia Arriba , Orca/genética
19.
J Struct Biol ; 194(3): 282-91, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26965557

RESUMEN

The hard corneous material of avian and reptilian scales, claws, beak and feathers is mainly derived from the presence of proteins formerly known as beta-keratins but now termed Corneous beta-proteins of sauropsids to distinguish them from keratins, which are members of the intermediate filament protein family. The modeling of the conserved 34 amino acid residues long central beta-sheet region of Corneous beta-proteins using an ab initio protein folding and structure prediction algorithm indicates that this region is formed by four antiparallel beta-sheets. Molecular dynamic simulations and Molecular Mechanics/Poisson Boltzmann Surface Area (MM-PBSA) analysis showed that the disposition of polar and apolar amino acids within the beta-region gives rise to an amphipathic core whose stability is further increased, especially in an aqueous environment, by the association into a dimer due to apolar interactions and specific amino-acid interactions. The dimers in turn polymerize into a 3nm thick linear beta-filament due to van der Waals and hydrogen-bond interactions. It is suggested that once this nuclear core of anti-parallel sheets evolved in the genome of a reptilian ancestor of the extant reptiles and birds about 300 millions years ago, new properties emerged in the corneous material forming scales, claws, beaks and feathers in these amniotes based on the tendency of these unique corneous proteins to form stable filaments different from keratin intermediate filaments or sterical structures formed by other corneous proteins so far known.


Asunto(s)
Proteínas Aviares/química , Proteínas de Reptiles/química , beta-Queratinas/química , Animales , Aves , Evolución Molecular , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulación de Dinámica Molecular , Polimerizacion , Estructura Secundaria de Proteína , Reptiles
20.
Cell Tissue Res ; 363(3): 735-50, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26340985

RESUMEN

Among the 26 human type II keratins, K78 is the only one that has not yet been explored with regard to its expression characteristics. Here, we show that, at both the transcriptional and translational levels, K78 is strongly expressed in the basal and parabasal cell layers with decreasing intensity in the lower suprabasal cells of keratinising and non-keratinising squamous epithelia and keratinocyte cultures. The same pattern has been detected at the transcriptional level in the corresponding mouse epithelia. Murine K78 protein, which contains an extraordinary large extension of its tail domain, which is unique among all known keratins, is not detectable by the antibody used. Concomitant studies in human epithelia have confirmed K78 co-expression with the classical basal keratins K5 and K14. Similarly, K78 co-expression with the differentiation-related type I keratins K10 (epidermis) and K13 (non-keratinising epithelia) occurs in the parabasal cell layer, whereas that of the corresponding type II keratins K1 (epidermis) and K4 (non-keratinising epithelia) unequivocally starts subsequent to the respective type I keratins. Our data concerning K78 expression modify the classical concept of keratin pair K5/K14 representing the basal compartment and keratin pairs K1/K10 or K4/K13 defining the differentiating compartment of stratified epithelia. Moreover, the K78 expression pattern and the decoupled K1/K10 and K4/K13 expression define the existence of a hitherto unperceived early differentiation stage in the parabasal layer characterized by K78/K10 or K78/K13 expression.


Asunto(s)
Epitelio/metabolismo , Regulación de la Expresión Génica , Queratinas Tipo II/genética , Queratinas Tipo II/metabolismo , Adulto , Secuencia de Aminoácidos , Animales , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Desarrollo Embrionario , Epidermis/metabolismo , Evolución Molecular , Técnica del Anticuerpo Fluorescente , Sitios Genéticos , Humanos , Hibridación in Situ , Queratinocitos/metabolismo , Queratinas Tipo II/química , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA