Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Blood ; 143(4): 342-356, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37922495

RESUMEN

ABSTRACT: Glycoprotein Ibα (GPIbα) is expressed on the surface of platelets and megakaryocytes (MKs) and anchored to the membrane skeleton by filamin A (flnA). Although GPIb and flnA have fundamental roles in platelet biogenesis, the nature of this interaction in megakaryocyte biology remains ill-defined. We generated a mouse model expressing either human wild-type (WT) GPIbα (hGPIbαWT) or a flnA-binding mutant (hGPIbαFW) and lacking endogenous mouse GPIbα. Mice expressing the mutant GPIbα transgene exhibited macrothrombocytopenia with preserved GPIb surface expression. Platelet clearance was normal and differentiation of MKs to proplatelets was unimpaired in hGPIbαFW mice. The most striking abnormalities in hGPIbαFW MKs were the defective formation of the demarcation membrane system (DMS) and the redistribution of flnA from the cytoplasm to the peripheral margin of MKs. These abnormalities led to disorganized internal MK membranes and the generation of enlarged megakaryocyte membrane buds. The defective flnA-GPIbα interaction also resulted in misdirected release of buds away from the vasculature into bone marrow interstitium. Restoring the linkage between flnA and GPIbα corrected the flnA redistribution within MKs and DMS ultrastructural defects as well as restored normal bud size and release into sinusoids. These studies define a new mechanism of macrothrombocytopenia resulting from dysregulated MK budding. The link between flnA and GPIbα is not essential for the MK budding process, however, it plays a major role in regulating the structure of the DMS, bud morphogenesis, and the localized release of buds into the circulation.


Asunto(s)
Megacariocitos , Complejo GPIb-IX de Glicoproteína Plaquetaria , Trombocitopenia , Animales , Humanos , Ratones , Plaquetas/metabolismo , Citoplasma/metabolismo , Filaminas/genética , Filaminas/metabolismo , Megacariocitos/metabolismo , Morfogénesis , Complejo GPIb-IX de Glicoproteína Plaquetaria/genética , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Trombocitopenia/genética , Trombocitopenia/metabolismo
2.
Semin Cell Dev Biol ; 137: 63-73, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35148939

RESUMEN

Blood platelets are small non-nucleated cellular fragments that prevent and stop hemorrhages. They are produced in the bone marrow by megakaryocytes through megakaryopoiesis. This intricate process involves profound microtubule rearrangements culminating in the formation of a unique circular sub-membranous microtubule array, the marginal band, which supports the typical disc-shaped morphology of platelets. Mechanistically, these processes are thought to be controlled by a specific tubulin code. In this review, we summarize the current knowledge on the key isotypes, notably ß1-, α4A- and α8-tubulin, and putative post-translational modifications, involved in platelet and marginal band formation. Additionally, we provide a provisional list of microtubule-associated proteins (MAPs) involved in these processes and a survey of tubulin variants identified in patients presenting defective platelet production. A comprehensive characterization of the platelet tubulin code and the identification of essential MAPs may be expected in the near future to shed new light on a very specialized microtubule assembly process with applications in platelet diseases and transfusion.


Asunto(s)
Megacariocitos , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Megacariocitos/metabolismo , Microtúbulos/metabolismo , Plaquetas/metabolismo , Procesamiento Proteico-Postraduccional
3.
Blood ; 140(21): 2290-2299, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36026602

RESUMEN

Native circulating blood platelets present with a discoid flat morphology maintained by a submembranous peripheral ring of microtubules, named marginal band. The functional importance of this particular shape is still debated, but it was initially hypothesized to facilitate platelet interaction with the injured vessel wall and to contribute to hemostasis. The importance of the platelet discoid morphology has since been questioned on the absence of clear bleeding tendency in mice lacking the platelet-specific ß1-tubulin isotype, which exhibits platelets with a thinner marginal band and an ovoid shape. Here, we generated a mouse model inactivated for ß1-tubulin and α4A-tubulin, an α-tubulin isotype strongly enriched in platelets. These mice present with fully spherical platelets completely devoid of a marginal band. In contrast to the single knockouts, the double deletion resulted in a severe bleeding defect in a tail-clipping assay, which was not corrected by increasing the platelet count to normal values by the thrombopoietin-analog romiplostim. In vivo, thrombus formation was almost abolished in a ferric chloride-injury model, with only a thin layer of loosely packed platelets, and mice were protected against death in a model of thromboembolism. In vitro, platelets adhered less efficiently and formed smaller-sized and loosely assembled aggregates when perfused over von Willebrand factor and collagen matrices. In conclusion, this study shows that blood platelets require 2 unique α- and ß-tubulin isotypes to acquire their characteristic discoid morphology. Lack of these 2 isotypes has a deleterious effect on flow-dependent aggregate formation and stability, leading to a severe bleeding disorder.


Asunto(s)
Trastornos de la Coagulación Sanguínea , Tubulina (Proteína) , Ratones , Animales , Plaquetas , Hemostasis , Microtúbulos , Factor de von Willebrand
4.
J Cell Sci ; 133(20)2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33127839

RESUMEN

The main function of blood platelets is to ensure hemostasis and prevent hemorrhages. The 1011 platelets needed daily are produced in a well-orchestrated process. However, this process is not yet fully understood and in vitro platelet production is still inefficient. Platelets are produced in the bone marrow by megakaryocytes, highly specialized precursor cells that extend cytoplasmic projections called proplatelets (PPTs) through the endothelial barrier of sinusoid vessels. In this Cell Science at a Glance article and the accompanying poster we discuss the mechanisms and pathways involved in megakaryopoiesis and platelet formation processes. We especially address the - still underestimated - role of the microenvironment of the bone marrow, and present recent findings on how PPT extension in vivo differs from that in vitro and entails different mechanisms. Finally, we recapitulate old but recently revisited evidence that - although bone marrow does produce megakaryocytes and PPTs - remodeling and the release of bona fide platelets, mainly occur in the downstream microcirculation.


Asunto(s)
Plaquetas , Megacariocitos , Médula Ósea , Citoplasma , Trombopoyesis
5.
Haematologica ; 106(5): 1368-1380, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32327502

RESUMEN

Platelets are produced by bone marrow megakaryocytes through cytoplasmic protrusions, named native proplatelets (nPPT), into blood vessels. Proplatelets also refer to protrusions observed in megakaryocyte culture (cPPT) that are morphologically different. Contrary to cPPT, the mechanisms of nPPT formation are poorly understood. We show here in living mice that nPPT elongation is in equilibrium between protrusive and retraction forces mediated by myosin-IIA. We also found, using WT and ß1-tubulin-deficient mice, that microtubule behavior differs between cPPT and nPPT, being absolutely required in vitro, while less critical in vivo. Remarkably, microtubule depolymerization in myosin-deficient mice did not affect nPPT elongation. We then calculated that blood Stokes'forces may be sufficient to promote nPPT extension, independently of myosin and microtubules. Together, we propose a new mechanism for nPPT extension that might explain contradictions between severely affected cPPT production and moderate platelet count defects in some patients and animal models.


Asunto(s)
Citoesqueleto , Megacariocitos , Animales , Plaquetas , Humanos , Ratones , Microtúbulos , Tubulina (Proteína)
6.
Transfusion ; 61(3): 919-930, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33527430

RESUMEN

BACKGROUND: Deterioration in quality of platelet concentrates (PCs) during storage results from the appearance of storage lesions affecting the hemostatic functions and posttransfusion survival of platelets. These lesions depend on the preparation and pathogen inactivation methods used, duration of storage, and platelet additive solutions (PASs) present in storage bags. METHODS: We investigated the effects of citrate contained in third-generation PAS (PAS-III) on storage lesions in buffy-coat PCs with or without photochemical (amotosalen-ultraviolet A) treatment over 7 days. RESULTS: Platelet counts were conserved in all groups during storage, as was platelet swirling without appearance of macroscopic aggregates. Glycoprotein (GP) IIbIIIa and GPVI expression remained stable, whereas GPIbα declined similarly in all groups during storage. Removal of citrate from PAS-III, resulting in global reduction of citrate from 11 to 5 mM, led to a significant decrease in glucose consumption, which largely countered a modest deleterious effect of photochemical treatment. Citrate reduction also resulted in decreased lactate generation and better maintenance of pH during storage, while photochemical treatment had no impact on these parameters. Moreover, citrate-free storage significantly reduced exposure of P-selectin and the apoptosis signal phosphatidylserine, thereby abolishing the activating effect of photochemical treatment on both parameters. Citrate reduction benefited platelet aggregation to various agonists up to Day 7, whereas PCT had no impact on these responses. CONCLUSION: Removal of citrate from PAS-III has a beneficial impact on platelet metabolism, spontaneous activation, and apoptosis, and improves platelet aggregation, irrespective of photochemical treatment, which should allow transfusion of platelets with better and longer-lasting functional properties.


Asunto(s)
Plaquetas/metabolismo , Conservación de la Sangre/métodos , Ácido Cítrico/farmacología , Agregación Plaquetaria/efectos de los fármacos , Apoptosis/efectos de los fármacos , Furocumarinas/farmacología , Hemostasis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Ácido Láctico/metabolismo , Selectina-P/metabolismo , Fosfatidilserinas , Recuento de Plaquetas , Pruebas de Función Plaquetaria , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo
7.
Transfusion ; 61(5): 1642-1653, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33580977

RESUMEN

BACKGROUND: The production of platelet concentrates (PCs) is evolving, and their survival capacity needs in vivo evaluation. This requires that the transfused platelets (PLTs) be distinguished from those of the recipient. Labeling at various biotin (Bio) densities allows one to concurrently trace multiple PLT populations, as reported for red blood cells. STUDY DESIGN AND METHODS: A method is described to label human PLTs at two densities of Bio for future clinical trials. Injectable-grade PLTs were prepared in a sterile environment, using injectable-grade buffers and good manufacturing practices (GMP)-grade Sulfo-NHS-Biotin. Sulfo-NHS-Biotin concentrations were chosen to maintain PLT integrity and avoid potential alloimmunization while enabling the detection of circulating BioPLTs. The impact of biotinylation on human PLT recirculation was evaluated in vivo in a severe immunodeficient mouse model using ex vivo flow cytometry. RESULTS: BioPLTs labeled with 1.2 or 10 µg/ml Sulfo-NHS-Biotin displayed normal ultrastructure and retained aggregation and secretion capacity and normal expression of the main surface glycoproteins. The procedure avoided detrimental PLT activation or apoptosis signals. Transfused human BioPLT populations could be distinguished from one another and from unlabeled circulating mouse PLTs, and their survival was comparable to that of unlabeled human PLTs in the mouse model. CONCLUSIONS: Provided low Sulfo-NHS-Biotin concentrations (<10 µg/ml) are used, injectable-grade BioPLTs comply with safety regulations, conserve PLT integrity, and permit accurate in vivo detection. This alternative to radioisotopes, which allows one to follow different PLT populations in the same recipient, should be valuable when assessing new PC preparations and monitoring PLT survival in clinical research.


Asunto(s)
Biotina/análogos & derivados , Plaquetas/citología , Rastreo Celular , Succinimidas/análisis , Animales , Biotina/análisis , Biotinilación , Plaquetas/química , Plaquetas/ultraestructura , Supervivencia Celular , Femenino , Humanos , Ratones , Recuento de Plaquetas , Transfusión de Plaquetas , Coloración y Etiquetado
8.
Arterioscler Thromb Vasc Biol ; 39(1): 37-47, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30580561

RESUMEN

Objective- After activation at the site of vascular injury, platelets differentiate into 2 subpopulations, exhibiting either proaggregatory or procoagulant phenotype. Although the functional role of proaggregatory platelets is well established, the physiological significance of procoagulant platelets, the dynamics of their formation, and spatial distribution in thrombus remain elusive. Approach and Results- Using transmission electron microscopy and fluorescence microscopy of arterial thrombi formed in vivo after ferric chloride-induced injury of carotid artery or mechanical injury of abdominal aorta in mice, we demonstrate that procoagulant platelets are located at the periphery of the formed thrombi. Real-time cell tracking during thrombus formation ex vivo revealed that procoagulant platelets originate from different locations within the thrombus and subsequently translocate towards its periphery. Such redistribution of procoagulant platelets was followed by generation of fibrin at thrombus surface. Using in silico model, we show that the outward translocation of procoagulant platelets can be driven by the contraction of the forming thrombi, which mechanically expels these nonaggregating cells to thrombus periphery. In line with the suggested mechanism, procoagulant platelets failed to translocate and remained inside the thrombi formed ex vivo in blood derived from nonmuscle myosin ( MYH9)-deficient mice. Ring-like distribution of procoagulant platelets and fibrin around the thrombus observed with blood of humans and wild-type mice was not present in thrombi of MYH9-knockout mice, confirming a major role of thrombus contraction in this phenomenon. Conclusions- Contraction of arterial thrombus is responsible for the mechanical extrusion of procoagulant platelets to its periphery, leading to heterogeneous structure of thrombus exterior.


Asunto(s)
Coagulación Sanguínea/fisiología , Plaquetas/fisiología , Trombosis/etiología , Animales , Movimiento Celular , Fibrina/análisis , Ratones , Agregación Plaquetaria/fisiología
9.
Platelets ; 31(5): 589-598, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31903825

RESUMEN

Electron microscopy (EM) has a long history in megakaryocyte (MK) cellular biology. This chapter shows how the electron microscope, since its first appearance almost 90 years ago, has occupied center stage in the studies of MK morphology and function. It describes some of the more productive EM techniques that have shaped our understanding of the physiology of thrombopoiesis. These include the standard transmission and scanning EM techniques as well as the new imaging methods, correlative microscopy and volume EM which provide information on the 3D organization of MKs on different scales: single organelles, whole cells and tissues. For each technique, we list the advantages and limitations, the resolution that can be achieved, the technical difficulties and the applications in MK biology.


Asunto(s)
Megacariocitos/metabolismo , Microscopía Electrónica de Rastreo/métodos , Humanos , Megacariocitos/citología
10.
Blood ; 128(16): 2022-2032, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27503502

RESUMEN

Megakaryocyte (MK) differentiation occurs within the bone marrow (BM), a complex 3-dimensional (3D) environment of low stiffness exerting local external constraints. To evaluate the influence of the 3D mechanical constraints that MKs may encounter in vivo, we differentiated mouse BM progenitors in methylcellulose (MC) hydrogels tuned to mimic BM stiffness. We found that MKs grown in a medium of 30- to 60-Pa stiffness more closely resembled those in the BM in terms of demarcation membrane system (DMS) morphological aspect and exhibited higher ploidy levels, as compared with MKs in liquid culture. Following resuspension in a liquid medium, MC-grown MKs displayed twice as much proplatelet formation as cells grown in liquid culture. Thus, the MC gel, by mimicking external constraints, appeared to positively influence MK differentiation. To determine whether MKs adapt to extracellular stiffness through mechanotransduction involving actomyosin-based modulation of the intracellular tension, myosin-deficient (Myh9-/-) progenitors were grown in MC gels. Absence of myosin resulted in abnormal cell deformation and strongly decreased proplatelet formation, similarly to features observed for Myh9-/- MKs differentiated in situ but not in vitro. Moreover, megakaryoblastic leukemia 1 (MKL1), a well-known actor in mechanotransduction, was found to be preferentially relocated within the nucleus of MC-differentiated MKs, whereas its inhibition prevented MC-mediated increased proplatelet formation. Altogether, these data show that a 3D medium mimicking BM stiffness contributes, through the myosin IIA and MKL1 pathways, to a more favorable in vitro environment for MK differentiation, which ultimately translates into increased proplatelet production.


Asunto(s)
Plaquetas/metabolismo , Médula Ósea/metabolismo , Diferenciación Celular/fisiología , Mecanotransducción Celular/fisiología , Megacariocitos/metabolismo , Animales , Plaquetas/citología , Células Cultivadas , Hidrogeles/química , Megacariocitos/citología , Metilcelulosa/química , Ratones , Ratones Noqueados , Cadenas Pesadas de Miosina , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIA no Muscular/metabolismo , Tensión Superficial , Transactivadores/genética , Transactivadores/metabolismo
11.
Blood ; 128(21): 2538-2549, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27625359

RESUMEN

Although granule secretion is pivotal in many platelet responses, the fusion routes of α and δ granule release remain uncertain. We used a 3D reconstruction approach based on electron microscopy to visualize the spatial organization of granules in unstimulated and activated platelets. Two modes of exocytosis were identified: a single mode that leads to release of the contents of individual granules and a compound mode that leads to the formation of granule-to-granule fusion, resulting in the formation of large multigranular compartments. Both modes occur during the course of platelet secretion. Single fusion events are more visible at lower levels of stimulation and early time points, whereas large multigranular compartments are present at higher levels of agonist and at later time points. Although α granules released their contents through both modes of exocytosis, δ granules underwent only single exocytosis. To define the underlying molecular mechanisms, we examined platelets from vesicle-associated membrane protein 8 (VAMP8) null mice. After weak stimulation, compound exocytosis was abolished and single exocytosis decreased in VAMP8 null platelets. Higher concentrations of thrombin bypassed the VAMP8 requirement, indicating that this isoform is a key but not a required factor for single and/or compound exocytosis. Concerning the biological relevance of our findings, compound exocytosis was observed in thrombi formed after severe laser injury of the vessel wall with thrombin generation. After superficial injury without thrombin generation, no multigranular compartments were detected. Our studies suggest that platelets use both modes of membrane fusion to control the extent of agonist-induced exocytosis.


Asunto(s)
Plaquetas/metabolismo , Exocitosis , Activación Plaquetaria , Proteínas R-SNARE/metabolismo , Vesículas Secretoras/metabolismo , Animales , Ratones , Ratones Mutantes , Proteínas R-SNARE/genética , Vesículas Secretoras/genética
12.
Blood ; 127(18): 2231-40, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-26966088

RESUMEN

The mechanisms regulating megakaryopoiesis and platelet production (thrombopoiesis) are still incompletely understood. Identification of a progenitor with enhanced thrombopoietic capacity would be useful to decipher these mechanisms and to improve our capacity to produce platelets in vitro. Differentiation of peripheral blood CD34(+) cells in the presence of bone marrow-human mesenchymal stromal cells (MSCs) enhanced the production of proplatelet-bearing megakaryocytes (MKs) and platelet-like elements. This was accompanied by enrichment in a MK precursor population exhibiting an intermediate level of CD41 positivity while maintaining its expression of CD34. Following sorting and subculture with MSCs, this CD34(+)CD41(low) population was able to efficiently generate proplatelet-bearing MKs and platelet-like particles. Similarly, StemRegenin 1 (SR1), an antagonist of the aryl hydrocarbon receptor (AhR) transcription factor known to maintain CD34 expression of progenitor cells, led to an enriched CD34(+)CD41(low) fraction and to an increased capacity to generate proplatelet-producing MKs and platelet-like elements ultrastructurally and functionally similar to circulating platelets. The effect of MSCs, like that of SR1, appeared to be mediated by an AhR-dependent mechanism because both culture conditions resulted in repression of its downstream effector CYP1B1. This newly described isolation of a precursor exhibiting strong MK potential could be exploited to study normal and abnormal thrombopoiesis and for in vitro platelet production.


Asunto(s)
Células Progenitoras de Megacariocitos/citología , Receptores de Hidrocarburo de Aril/fisiología , Trombopoyesis/fisiología , Antígenos CD34/análisis , Plaquetas/citología , Separación Celular , Células Cultivadas , Técnicas de Cocultivo , Medio de Cultivo Libre de Suero , Citocromo P-450 CYP1B1/fisiología , Humanos , Inmunofenotipificación , Recuento de Plaquetas , Glicoproteína IIb de Membrana Plaquetaria/análisis , Purinas/farmacología , Transducción de Señal
13.
Blood ; 128(13): 1745-55, 2016 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-27432876

RESUMEN

Binding of coagulation factors to phosphatidylserine (PS)-exposing procoagulant-activated platelets followed by formation of the membrane-dependent enzyme complexes is critical for blood coagulation. Procoagulant platelets formed upon strong platelet stimulation, usually with thrombin plus collagen, are large "balloons" with a small (∼1 µm radius) "cap"-like convex region that is enriched with adhesive proteins. Spatial distribution of blood coagulation factors on the surface of procoagulant platelets was investigated using confocal microscopy. All of them, including factors IXa (FIXa), FXa/FX, FVa, FVIII, prothrombin, and PS-sensitive marker Annexin V were distributed nonhomogeneously: they were primarily localized in the "cap," where their mean concentration was by at least an order of magnitude, higher than on the "balloon." Assembly of intrinsic tenase on liposomes with various PS densities while keeping the PS content constant demonstrated that such enrichment can accelerate this reaction by 2 orders of magnitude. The mechanisms of such acceleration were investigated using a 3-dimensional computer simulation model of intrinsic tenase based on these data. Transmission electron microscopy and focal ion beam-scanning electron microscopy with Annexin V immunogold-labeling revealed a complex organization of the "caps." In platelet thrombi formed in whole blood on collagen under arterial shear conditions, ubiquitous "caps" with increased Annexin V, FX, and FXa binding were observed, indicating relevance of this mechanism for surface-attached platelets under physiological flow. These results reveal an essential heterogeneity in the surface distribution of major coagulation factors on the surface of procoagulant platelets and suggest its importance in promoting membrane-dependent coagulation reactions.


Asunto(s)
Factores de Coagulación Sanguínea/metabolismo , Coagulación Sanguínea/fisiología , Plaquetas/metabolismo , Adulto , Anexina A5/metabolismo , Plaquetas/ultraestructura , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Simulación por Computador , Humanos , Imagenología Tridimensional , Técnicas In Vitro , Microscopía Confocal , Microscopía Inmunoelectrónica , Fosfatidilserinas/sangre , Activación Plaquetaria/fisiología , Unión Proteica , Trombina/metabolismo , Trombosis/metabolismo , Trombosis/patología
15.
Haematologica ; 102(6): 1006-1016, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28255014

RESUMEN

Congenital macrothrombocytopenia is a family of rare diseases, of which a significant fraction remains to be genetically characterized. To analyze cases of unexplained thrombocytopenia, 27 individuals from a patient cohort of the Bleeding and Thrombosis Exploration Center of the University Hospital of Marseille were recruited for a high-throughput gene sequencing study. This strategy led to the identification of two novel FLI1 variants (c.1010G>A and c.1033A>G) responsible for macrothrombocytopenia. The FLI1 variant carriers' platelets exhibited a defect in aggregation induced by low-dose adenosine diphosphate (ADP), collagen and thrombin receptor-activating peptide (TRAP), a defect in adenosine triphosphate (ATP) secretion, a reduced mepacrine uptake and release and a reduced CD63 expression upon TRAP stimulation. Precise ultrastructural analysis of platelet content was performed using transmission electron microscopy and focused ion beam scanning electron microscopy. Remarkably, dense granules were nearly absent in the carriers' platelets, presumably due to a biogenesis defect. Additionally, 25-29% of the platelets displayed giant α-granules, while a smaller proportion displayed vacuoles (7-9%) and autophagosome-like structures (0-3%). In vitro study of megakaryocytes derived from circulating CD34+ cells of the carriers revealed a maturation defect and reduced proplatelet formation potential. The study of the FLI1 variants revealed a significant reduction in protein nuclear accumulation and transcriptional activity properties. Intraplatelet flow cytometry efficiently detected the biomarker MYH10 in FLI1 variant carriers. Overall, this study provides new insights into the phenotype, pathophysiology and diagnosis of FLI1 variant-associated thrombocytopenia.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Trombocitopenia/etiología , Adulto , Plaquetas/patología , Plaquetas/ultraestructura , Núcleo Celular/química , Variación Genética , Humanos , Masculino , Megacariocitos/patología , Persona de Mediana Edad , Agregación Plaquetaria/genética , Proteína Proto-Oncogénica c-fli-1/genética , Trombocitopenia/congénito , Transcripción Genética , Adulto Joven
17.
Blood ; 123(8): 1261-9, 2014 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-24243973

RESUMEN

During proplatelet formation, a relatively homogeneous content of organelles is transported from the megakaryocyte (MK) to the nascent platelets along microtubule tracks. We found that platelets from Myh9(-/-) mice and a MYH9-RD patient were heterogeneous in their organelle content (granules and mitochondria). In addition, Myh9(-/-) MKs have an abnormal cytoplasmic clustering of organelles, suggesting that the platelet defect originates in the MKs. Myosin is not involved in the latest stage of organelle traffic along microtubular tracks in the proplatelet shafts as shown by confocal observations of proplatelet buds. By contrast, it is required for the earlier distribution of organelles within the large MK preplatelet fragments shed into the sinusoid circulation before terminal proplatelet remodeling. We show here that F-actin is abnormally clustered in the cytoplasm of Myh9(-/-) MKs and actin polymerization is impaired in platelets. Myosin IIA is required for normal granule motility and positioning within MKs, mechanisms that may be dependent on organelle traveling and tethering onto F-actin cytoskeleton tracks. Altogether, our results indicate that the distribution of organelles within platelets critically depends on a homogeneous organelle distribution within MKs and preplatelet fragments, which requires myosin IIA.


Asunto(s)
Actinas/metabolismo , Plaquetas/metabolismo , Pérdida Auditiva Sensorineural/metabolismo , Megacariocitos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Orgánulos/fisiología , Trombocitopenia/congénito , Animales , Plaquetas/patología , Plaquetas/ultraestructura , Gránulos Citoplasmáticos/metabolismo , Femenino , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Humanos , Masculino , Megacariocitos/patología , Megacariocitos/ultraestructura , Ratones , Ratones Mutantes , Microscopía por Video , Persona de Mediana Edad , Proteínas Motoras Moleculares/genética , Cadenas Pesadas de Miosina/genética , Miosina Tipo IIA no Muscular/genética , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombocitopenia/patología
18.
Blood ; 123(6): 921-30, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24152908

RESUMEN

The demarcation membrane system (DMS) in megakaryocytes forms the plasma membrane (PM) of future platelets. Using confocal microscopy, electron tomography, and large volume focused ion beam/scanning electron microscopy (FIB/SEM), we determined the sequential steps of DMS formation. We identified a pre-DMS that initiated at the cell periphery and was precisely located between the nuclear lobes. At all developmental stages, the DMS remained continuous with the cell surface. The number of these connections correlated well with the nuclear lobulation, suggesting a relationship with cleavage furrow formation and abortive cytokinesis. On DMS expansion, Golgi complexes assembled around the pre-DMS, and fusion profiles between trans-golgi network-derived vesicles and the DMS were observed. Brefeldin-A reduced DMS expansion, indicating that the exocytic pathway is essential for DMS biogenesis. Close contacts between the endoplasmic reticulum (ER) and the DMS were detected, suggesting physical interaction between the 2 membrane systems. FIB/SEM revealed that the DMS forms an intertwined tubular membrane network resembling the platelet open canalicular system. We thus propose the following steps in DMS biogenesis: (1) focal membrane assembly at the cell periphery; (2) PM invagination and formation of a perinuclear pre-DMS; (3) expansion through membrane delivery from Golgi complexes; and (4) ER-mediated lipid transfer.


Asunto(s)
Médula Ósea/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Megacariocitos/citología , Células Madre/metabolismo , Red trans-Golgi/metabolismo , Animales , Células Cultivadas , Megacariocitos/metabolismo , Ratones , Microscopía Fluorescente , Células Madre/citología
19.
Circ Res ; 114(5): 780-91, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24406984

RESUMEN

RATIONALE: Platelets are the most important cells in the primary prevention of blood loss after injury. In addition, platelets are at the interface between circulating leukocytes and the (sub)endothelium regulating inflammatory responses. OBJECTIVE: Our aim was to study the dynamic process that leads to the formation of procoagulant and proinflammatory platelets under physiological flow. METHODS AND RESULTS: In the present study, we describe the formation of extremely long, negatively charged membrane strands that emerge from platelets adhered under flow. These flow-induced protrusions (FLIPRs) are formed in vitro on different physiological substrates and are also detected in vivo in a mouse carotid injury model. FLIPRs are formed downstream the adherent and activated platelets and reach lengths of 250 µm. FLIPR formation is shear-dependent and requires cyclophilin D, calpain, and Rac1 activation. It is accompanied by a disassembly of the F-actin and microtubule organization. Monocytes and neutrophils roll over FLIPRs in a P-selectin/P-selectin glycoprotein ligand-1-dependent manner, retrieving fragments of FLIPRs as microparticles on their surface. Consequently, monocytes and neutrophils become activated, as demonstrated by increased CD11b expression and L-selectin shedding. CONCLUSIONS: The formation of long platelet membrane extensions, such as the ones presented in our flow model, may pave the way to generate an increased membrane surface for interaction with monocytes and neutrophils. Our study provides a mechanistic model for platelet membrane transfer and the generation of monocyte/neutrophil-microparticle complexes. We propose that the formation of FLIPRs in vivo contributes to the well-established proinflammatory function of platelets and platelet-derived microparticles.


Asunto(s)
Plaquetas/citología , Plaquetas/inmunología , Traumatismos de las Arterias Carótidas/inmunología , Micropartículas Derivadas de Células/inmunología , Monocitos/inmunología , Neutrófilos/inmunología , Animales , Calcio/metabolismo , Traumatismos de las Arterias Carótidas/patología , Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Endotelio Vascular/citología , Endotelio Vascular/inmunología , Voluntarios Sanos , Humanos , Ratones , Monocitos/citología , Neutrófilos/citología , Activación Plaquetaria/inmunología , Flujo Sanguíneo Regional/inmunología , Estrés Mecánico
20.
Blood ; 122(18): 3178-87, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-23861250

RESUMEN

Blood platelets are anuclear cell fragments that are essential for blood clotting. Platelets are produced by bone marrow megakaryocytes (MKs), which extend protrusions, or so-called proplatelets, into bone marrow sinusoids. Proplatelet formation requires a profound reorganization of the MK actin and tubulin cytoskeleton. Rho GTPases, such as RhoA, Rac1, and Cdc42, are important regulators of cytoskeletal rearrangements in platelets; however, the specific roles of these proteins during platelet production have not been established. Using conditional knockout mice, we show here that Rac1 and Cdc42 possess redundant functions in platelet production and function. In contrast to a single-deficiency of either protein, a double-deficiency of Rac1 and Cdc42 in MKs resulted in macrothrombocytopenia, abnormal platelet morphology, and impaired platelet function. Double-deficient bone marrow MKs matured normally in vivo but displayed highly abnormal morphology and uncontrolled fragmentation. Consistently, a lack of Rac1/Cdc42 virtually abrogated proplatelet formation in vitro. Strikingly, this phenotype was associated with severely defective tubulin organization, whereas actin assembly and structure were barely affected. Together, these results suggest that the combined action of Rac1 and Cdc42 is crucial for platelet production, particularly by regulating microtubule dynamics.


Asunto(s)
Células Progenitoras de Megacariocitos/metabolismo , Megacariocitos/metabolismo , Tubulina (Proteína)/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP rac1/genética , Animales , Western Blotting , Citoesqueleto/metabolismo , Hemostasis/genética , Células Progenitoras de Megacariocitos/citología , Megacariocitos/citología , Megacariocitos/ultraestructura , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Microtúbulos/metabolismo , Seudópodos/genética , Seudópodos/metabolismo , Trombocitopenia/sangre , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombosis/sangre , Trombosis/genética , Trombosis/metabolismo , Proteína de Unión al GTP cdc42/deficiencia , Proteína de Unión al GTP rac1/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA