Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neurosci ; 34(46): 15234-43, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25392492

RESUMEN

Sensory responses are modulated by internal factors including attention, experience, and brain state. This is partly due to fluctuations in neuromodulatory input from regions such as the noradrenergic locus ceruleus (LC) in the brainstem. LC activity changes with arousal and modulates sensory processing, cognition, and memory. The main olfactory bulb (MOB) is richly targeted by LC fibers and noradrenaline profoundly influences MOB circuitry and odor-guided behavior. Noradrenaline-dependent plasticity affects the output of the MOB; however. it is unclear whether noradrenergic plasticity also affects the input to the MOB from olfactory sensory neurons (OSNs) in the glomerular layer. Noradrenergic terminals are found in the glomerular layer, but noradrenaline receptors do not seem to acutely modulate OSN terminals in vitro. We investigated whether noradrenaline induces plasticity at the glomerulus. We used wide-field optical imaging to measure changes in odor responses following electrical stimulation of LC in anesthetized mice. Surprisingly, odor-evoked intrinsic optical signals at the glomerulus were persistently weakened after LC activation. Calcium imaging selectively from OSNs confirmed that this effect was due to suppression of presynaptic input and was prevented by noradrenergic antagonists. Finally, suppression of responses to an odor did not require precise coincidence of the odor with LC activation. However, suppression was intensified by LC activation in the absence of odors. We conclude that noradrenaline release from LC has persistent effects on odor processing already at the first synapse of the main olfactory system. This mechanism could contribute to arousal-dependent memories.


Asunto(s)
Neuronas Adrenérgicas/fisiología , Locus Coeruleus/fisiología , Plasticidad Neuronal/fisiología , Bulbo Olfatorio/fisiología , Neuronas Receptoras Olfatorias/fisiología , Antagonistas Adrenérgicos/farmacología , Animales , Estimulación Eléctrica , Humanos , Masculino , Ratones , Odorantes , Bulbo Olfatorio/citología , Percepción Olfatoria/fisiología , Neuronas Receptoras Olfatorias/efectos de los fármacos , Imagen Óptica
2.
Artículo en Inglés | MEDLINE | ID: mdl-18704442

RESUMEN

Optic flow is a main source of information about self movement and the three-dimensional composition of the environment during locomotion. It is processed by the accessory optic system in all vertebrates. The optokinetic response is elicited by rotational optic flow, e.g. in a rotating drum lined with vertical stripes. We investigated here the effect of rotational optic flow on the optokinetic response in wild type and white zebra finches. The highest stimulus velocity eliciting an optokinetic response (upper velocity threshold) was dependent on stimulus direction and illumination level, but was not different between the colour morphs. The upper velocity threshold was higher with temporal to nasal movements in monocularly exposed birds and symmetrical with binocular exposure. Its increase with illumination level followed Fechner's law and reached a plateau at about 560 Lux. In bright daylight, white birds did not show optokinetic responses. We conclude that the altered wiring of the visual system of white birds has no influence on accessory optic system function. The unwillingness of white birds to respond with optokinetic response in bright daylight may be due to a substantial lack of inhibition within the visual system as demonstrated earlier, which may enhance the sensibility to glare.


Asunto(s)
Dominancia Cerebral/genética , Pinzones/fisiología , Nistagmo Optoquinético/genética , Visión Ocular/genética , Vías Visuales/fisiología , Percepción Visual/genética , Animales , Dominancia Cerebral/fisiología , Iluminación/métodos , Estimulación Luminosa/métodos , Visión Ocular/fisiología , Percepción Visual/fisiología
3.
PLoS One ; 11(5): e0154927, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27139912

RESUMEN

The visual wulst is the telencephalic target of the avian thalamofugal visual system. It contains several retinotopically organised representations of the contralateral visual field. We used optical imaging of intrinsic signals, electrophysiological recordings, and retrograde tracing with two fluorescent tracers to evaluate properties of these representations in the zebra finch, a songbird with laterally placed eyes. Our experiments revealed that there is some variability of the neuronal maps between individuals and also concerning the number of detectable maps. It was nonetheless possible to identify three different maps, a posterolateral, a posteromedial, and an anterior one, which were quite constant in their relation to each other. The posterolateral map was in contrast to the two others constantly visible in each successful experiment. The topography of the two other maps was mirrored against that map. Electrophysiological recordings in the anterior and the posterolateral map revealed that all units responded to flashes and to moving bars. Mean directional preferences as well as latencies were different between neurons of the two maps. Tracing experiments confirmed previous reports on the thalamo-wulst connections and showed that the anterior and the posterolateral map receive projections from separate clusters within the thalamic nuclei. Maps are connected to each other by wulst intrinsic projections. Our experiments confirm that the avian visual wulst contains several separate retinotopic maps with both different physiological properties and different thalamo-wulst afferents. This confirms that the functional organization of the visual wulst is very similar to its mammalian equivalent, the visual cortex.


Asunto(s)
Passeriformes/anatomía & histología , Passeriformes/fisiología , Telencéfalo/fisiología , Campos Visuales , Animales , Fenómenos Electrofisiológicos , Masculino , Imagen Óptica , Telencéfalo/anatomía & histología , Corteza Visual/anatomía & histología , Corteza Visual/fisiología
4.
Artículo en Inglés | MEDLINE | ID: mdl-24065895

RESUMEN

The retinal image changes that occur during locomotion, the optic flow, carry information about self-motion and the three-dimensional structure of the environment. Especially fast moving animals with only little binocular vision depend on these depth cues for maneuvering. They actively control their gaze to facilitate perception of depth based on cues in the optic flow. In the visual system of birds, nucleus rotundus neurons were originally found to respond to object motion but not to background motion. However, when background and object were both moving, responses increased the more the direction and velocity of object and background motion on the retina differed. These properties may play a role in representing depth cues in the optic flow. We therefore investigated, how neurons in nucleus rotundus respond to optic flow that contains depth cues. We presented simplified and naturalistic optic flow on a panoramic LED display while recording from single neurons in nucleus rotundus of anaesthetized zebra finches. Unlike most studies on motion vision in birds, our stimuli included depth information. We found extensive responses of motion selective neurons in nucleus rotundus to optic flow stimuli. Simplified stimuli revealed preferences for optic flow reflecting translational or rotational self-motion. Naturalistic optic flow stimuli elicited complex response modulations, but the presence of objects was signaled by only few neurons. The neurons that did respond to objects in the optic flow, however, show interesting properties.

5.
PLoS One ; 3(12): e3956, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19107185

RESUMEN

Fast moving animals depend on cues derived from the optic flow on their retina. Optic flow from translational locomotion includes information about the three-dimensional composition of the environment, while optic flow experienced during a rotational self motion does not. Thus, a saccadic gaze strategy that segregates rotations from translational movements during locomotion will facilitate extraction of spatial information from the visual input. We analysed whether birds use such a strategy by highspeed video recording zebra finches from two directions during an obstacle avoidance task. Each frame of the recording was examined to derive position and orientation of the beak in three-dimensional space. The data show that in all flights the head orientation was shifted in a saccadic fashion and was kept straight between saccades. Therefore, birds use a gaze strategy that actively stabilizes their gaze during translation to simplify optic flow based navigation. This is the first evidence of birds actively optimizing optic flow during flight.


Asunto(s)
Movimientos Oculares/fisiología , Pinzones/fisiología , Vuelo Animal/fisiología , Animales , Cabeza/fisiología , Modelos Biológicos , Movimiento (Física) , Movimientos Sacádicos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA