Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Life Sci Alliance ; 7(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37989524

RESUMEN

Tissue-specific gene regulation during development involves the interplay between transcription factors and epigenetic regulators binding to enhancer and promoter elements. The pattern of active enhancers defines the cellular differentiation state. However, developmental gene activation involves a previous step called chromatin priming which is not fully understood. We recently developed a genome-wide functional assay that allowed us to functionally identify enhancer elements integrated in chromatin regulating five stages spanning the in vitro differentiation of embryonic stem cells to blood. We also measured global chromatin accessibility, histone modifications, and transcription factor binding. The integration of these data identified and characterised cis-regulatory elements which become activated before the onset of gene expression, some of which are primed in a signalling-dependent fashion. Deletion of such a priming element leads to a delay in the up-regulation of its associated gene in development. Our work uncovers the details of a complex network of regulatory interactions with the dynamics of early chromatin opening being at the heart of dynamic tissue-specific gene expression control.


Asunto(s)
Cromatina , Secuencias Reguladoras de Ácidos Nucleicos , Cromatina/genética , Diferenciación Celular/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/genética , Regiones Promotoras Genéticas/genética
2.
Nat Commun ; 14(1): 6947, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935654

RESUMEN

Disease-causing mutations in genes encoding transcription factors (TFs) can affect TF interactions with their cognate DNA-binding motifs. Whether and how TF mutations impact upon the binding to TF composite elements (CE) and the interaction with other TFs is unclear. Here, we report a distinct mechanism of TF alteration in human lymphomas with perturbed B cell identity, in particular classic Hodgkin lymphoma. It is caused by a recurrent somatic missense mutation c.295 T > C (p.Cys99Arg; p.C99R) targeting the center of the DNA-binding domain of Interferon Regulatory Factor 4 (IRF4), a key TF in immune cells. IRF4-C99R fundamentally alters IRF4 DNA-binding, with loss-of-binding to canonical IRF motifs and neomorphic gain-of-binding to canonical and non-canonical IRF CEs. IRF4-C99R thoroughly modifies IRF4 function by blocking IRF4-dependent plasma cell induction, and up-regulates disease-specific genes in a non-canonical Activator Protein-1 (AP-1)-IRF-CE (AICE)-dependent manner. Our data explain how a single mutation causes a complex switch of TF specificity and gene regulation and open the perspective to specifically block the neomorphic DNA-binding activities of a mutant TF.


Asunto(s)
Factores Reguladores del Interferón , Linfoma , Humanos , Linfocitos B/metabolismo , ADN , Regulación de la Expresión Génica , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Linfoma/genética
3.
FEBS J ; 289(5): 1240-1255, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33511785

RESUMEN

Development of multicellular organisms requires the differential usage of our genetic information to change one cell fate into another. This process drives the appearance of different cell types that come together to form specialized tissues sustaining a healthy organism. In the last decade, by moving away from studying single genes toward a global view of gene expression control, a revolution has taken place in our understanding of how genes work together and how cells communicate to translate the information encoded in the genome into a body plan. The development of hematopoietic cells has long served as a paradigm of development in general. In this review, we highlight how transcription factors and chromatin components work together to shape the gene regulatory networks controlling gene expression in the hematopoietic system and to drive blood cell differentiation. In addition, we outline how this process goes astray in blood cancers. We also touch upon emerging concepts that place these processes firmly into their associated subnuclear structures adding another layer of the control of differential gene expression.


Asunto(s)
Células Sanguíneas/metabolismo , Carcinogénesis/genética , Neoplasias Hematológicas/genética , Células Madre Hematopoyéticas/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Células Sanguíneas/clasificación , Células Sanguíneas/citología , Carcinogénesis/metabolismo , Carcinogénesis/patología , Comunicación Celular , Diferenciación Celular , Linaje de la Célula/genética , Cromatina/química , Cromatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patología , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
4.
Life Sci Alliance ; 4(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33397648

RESUMEN

Mutations of the haematopoietic master regulator RUNX1 are associated with acute myeloid leukaemia, familial platelet disorder and other haematological malignancies whose phenotypes and prognoses depend upon the class of the RUNX1 mutation. The biochemical behaviour of these oncoproteins and their ability to cause unique diseases has been well studied, but the genomic basis of their differential action is unknown. To address this question we compared integrated phenotypic, transcriptomic, and genomic data from cells expressing four types of RUNX1 oncoproteins in an inducible fashion during blood development from embryonic stem cells. We show that each class of mutant RUNX1 deregulates endogenous RUNX1 function by a different mechanism, leading to specific alterations in developmentally controlled transcription factor binding and chromatin programming. The result is distinct perturbations in the trajectories of gene regulatory network changes underlying blood cell development which are consistent with the nature of the final disease phenotype. The development of novel treatments for RUNX1-driven diseases will therefore require individual consideration.


Asunto(s)
Diferenciación Celular/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Hematopoyesis/genética , Mutación , Proteínas Oncogénicas/genética , Factor de Unión a CCAAT/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Modelos Biológicos , Proteínas Oncogénicas/metabolismo , Unión Proteica
5.
Leukemia ; 33(6): 1463-1474, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30546079

RESUMEN

Long terminal repeat (LTR) elements are wide-spread in the human genome and have the potential to act as promoters and enhancers. Their expression is therefore under tight epigenetic control. We previously reported in classical Hodgkin Lymphoma (cHL) that a member of the THE1B class of LTR elements acted as a promoter for the proto-oncogene and growth factor receptor gene CSF1R and that expression of this gene is required for cHL tumour survival. However, to which extent and how such elements participate in globally shaping the unique cHL gene expression programme is unknown. To address this question we mapped the genome-wide activation of THE1-LTRs in cHL cells using a targeted next generation sequencing approach (RACE-Seq). Integration of these data with global gene expression data from cHL and control B cell lines showed a unique pattern of LTR activation impacting on gene expression, including genes associated with the cHL phenotype. We also show that global LTR activation is induced by strong inflammatory stimuli. Together these results demonstrate that LTR activation provides an additional layer of gene deregulation in classical Hodgkin lymphoma and highlight the potential impact of genome-wide LTR activation in other inflammatory diseases.


Asunto(s)
Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Enfermedad de Hodgkin/genética , Secuencias Reguladoras de Ácidos Nucleicos , Secuencias Repetidas Terminales , Activación Transcripcional , Perfilación de la Expresión Génica , Enfermedad de Hodgkin/patología , Humanos , Regiones Promotoras Genéticas , Proto-Oncogenes Mas , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA