Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
PLoS Genet ; 13(8): e1006912, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28817564

RESUMEN

The Hedgehog (Hh) signaling pathway plays a key role in cell fate specification, proliferation, and survival during mammalian development. Cells require a small organelle, the primary cilium, to respond properly to Hh signals and the key regulators of Hh signal transduction exhibit dynamic localization to this organelle when the pathway is activated. Here, we investigate the role of Cell Cycle Related kinase (CCRK) in regulation of cilium-dependent Hh signaling in the mouse. Mice mutant for Ccrk exhibit a variety of developmental defects indicative of inappropriate regulation of this pathway. Cell biological, biochemical and genetic analyses indicate that CCRK is required to control the Hedgehog pathway at the level or downstream of Smoothened and upstream of the Gli transcription factors, Gli2 and Gli3. In vitro experiments indicate that Ccrk mutant cells show a greater deficit in response to signaling over long time periods than over short ones. Similar to Chlamydomonas mutants lacking the CCRK homolog, LF2, mouse Ccrk mutant cells show defective regulation of ciliary length and morphology. Ccrk mutant cells exhibit defects in intraflagellar transport (the transport mechanism used to assemble cilia), as well as slowed kinetics of ciliary enrichment of key Hh pathway regulators. Collectively, the data suggest that CCRK positively regulates the kinetics by which ciliary proteins such as Smoothened and Gli2 are imported into the cilium, and that the efficiency of ciliary recruitment allows for potent responses to Hedgehog signaling over long time periods.


Asunto(s)
Cilios/genética , Quinasas Ciclina-Dependientes/genética , Factores de Transcripción de Tipo Kruppel/genética , Morfogénesis/genética , Receptor Smoothened/genética , Animales , Ciclo Celular/genética , Diferenciación Celular/genética , Chlamydomonas/genética , Desarrollo Embrionario/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Ratones , Mutación , Proteínas del Tejido Nervioso/genética , Transducción de Señal , Proteína Gli2 con Dedos de Zinc , Proteína Gli3 con Dedos de Zinc , Quinasa Activadora de Quinasas Ciclina-Dependientes
2.
Dev Biol ; 434(1): 24-35, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29166577

RESUMEN

Cell cycle-related kinase (CCRK) is a conserved regulator of ciliogenesis whose loss in mice leads to a wide range of developmental defects, including exencephaly, preaxial polydactyly, skeletal abnormalities, and microphthalmia. Here, we investigate the role of CCRK in mouse eye development. Ccrk mutants show dramatic patterning defects, with an expansion of the optic stalk domain into the optic cup, as well as an expansion of the retinal pigment epithelium (RPE) into neural retina (NR) territory. In addition, Ccrk mutants display a shortened optic stalk. These defects are associated with bimodal changes in Hedgehog (Hh) pathway activity within the eye, including the loss of proximal, high level responses but a gain in distal, low level responses. We simultaneously removed the Hh activator GLI2 in Ccrk mutants (Ccrk-/-;Gli2-/-), which resulted in rescue of optic cup patterning and exacerbation of optic stalk length defects. Next, we disrupted the Hh pathway antagonist GLI3 in mutants lacking CCRK (Ccrk-/-;Gli3-/-), which lead to even greater expansion of the RPE markers into the NR domain and a complete loss of NR specification within the optic cup. These results indicate that CCRK functions in eye development by both positively and negatively regulating the Hh pathway, and they reveal distinct requirements for Hh signaling in patterning and morphogenesis of the eyes.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Embrión de Mamíferos/embriología , Ojo/embriología , Proteínas Hedgehog/metabolismo , Organogénesis/fisiología , Transducción de Señal/fisiología , Proteína Gli2 con Dedos de Zinc/metabolismo , Animales , Quinasas Ciclina-Dependientes/genética , Embrión de Mamíferos/citología , Ojo/citología , Femenino , Proteínas Hedgehog/genética , Masculino , Ratones , Ratones Mutantes , Proteína Gli2 con Dedos de Zinc/genética , Quinasa Activadora de Quinasas Ciclina-Dependientes
3.
Dev Biol ; 430(1): 32-40, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28778798

RESUMEN

Patterning of the vertebrate eye into optic stalk, retinal pigment epithelium (RPE) and neural retina (NR) territories relies on a number of signaling pathways, but how these signals are interpreted by optic progenitors is not well understood. The primary cilium is a microtubule-based organelle that is essential for Hedgehog (Hh) signaling, but it has also been implicated in the regulation of other signaling pathways. Here, we show that the optic primordium is ciliated during early eye development and that ciliogenesis is essential for proper patterning and morphogenesis of the mouse eye. Ift172 mutants fail to generate primary cilia and exhibit patterning defects that resemble those of Gli3 mutants, suggesting that cilia are required to restrict Hh activity during eye formation. Ift122 mutants, which produce cilia with abnormal morphology, generate optic vesicles that fail to invaginate to produce the optic cup. These mutants also lack formation of the lens, RPE and NR. Such phenotypic features are accompanied by strong, ectopic Hh pathway activity, evidenced by altered gene expression patterns. Removal of GLI2 from Ift122 mutants rescued several aspects of optic cup and lens morphogenesis as well as RPE and NR specification. Collectively, our data suggest that proper assembly of primary cilia is critical for restricting the Hedgehog pathway during eye formation in the mouse.


Asunto(s)
Cilios/metabolismo , Ojo/embriología , Ojo/metabolismo , Proteínas Hedgehog/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Animales , Tipificación del Cuerpo , Proteínas del Citoesqueleto , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Cristalino/citología , Cristalino/metabolismo , Ratones , Modelos Biológicos , Morfogénesis , Mutación/genética , Células Madre/citología , Células Madre/metabolismo , Proteína Gli2 con Dedos de Zinc
4.
Dev Biol ; 391(2): 182-95, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24780629

RESUMEN

Asymmetric fluid flow in the node and Nodal signaling in the left lateral plate mesoderm (LPM) drive left-right patterning of the mammalian body plan. However, the mechanisms linking fluid flow to asymmetric gene expression in the LPM remain unclear. Here we show that the small GTPase Rab23, known for its role in Hedgehog signaling, plays a separate role in Nodal signaling and left-right patterning in the mouse embryo. Rab23 is not required for initial symmetry breaking in the node, but it is required for expression of Nodal and Nodal target genes in the LPM. Microinjection of Nodal protein and transfection of Nodal cDNA in the embryo indicate that Rab23 is required for the production of functional Nodal signals, rather than the response to them. Using gain- and loss-of function approaches, we show that Rab23 plays a similar role in zebrafish, where it is required in the teleost equivalent of the mouse node, Kupffer׳s vesicle. Collectively, these data suggest that Rab23 is an essential component of the mechanism that transmits asymmetric patterning information from the node to the LPM.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Proteínas de Unión al GTP rab/metabolismo , Animales , Técnicas de Cultivo de Embriones , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Factor 1 de Diferenciación de Crecimiento/biosíntesis , Factor 1 de Diferenciación de Crecimiento/genética , Proteínas Hedgehog/metabolismo , Cinesinas/genética , Factores de Transcripción de Tipo Kruppel/genética , Mesodermo/embriología , Ratones , Ratones Endogámicos C3H , Ratones Transgénicos , Morfolinos/genética , Proteína Nodal/genética , Proteína Nodal/metabolismo , Transducción de Señal , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteína Gli2 con Dedos de Zinc , Proteínas de Unión al GTP rab/genética
5.
Proc Natl Acad Sci U S A ; 108(4): 1456-61, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21209331

RESUMEN

Primary cilia are required for proper Sonic Hedgehog (Shh) signaling in mammals. However, their role in the signal transduction process remains unclear. We have identified sister of open brain (sopb), a null allele of mouse Intraflagellar transport protein 122 (Ift122). IFT122 negatively regulates the Shh pathway in the cilium at a step downstream of the Shh ligand and the transmembrane protein Smoothened, but upstream of the Gli2 transcription factor. Ift122(sopb) mutants generate primary cilia, but they show features of defective retrograde intraflagellar transport. IFT122 controls the ciliary localization of Shh pathway regulators in different ways. Disruption of IFT122 leads to accumulation of Gli2 and Gli3 at cilia tips while blocking the ciliary localization of the antagonist TULP3. Suppressor of Fused and Smoothened localize to the cilium through an IFT122-independent mechanism. We propose that the balance between positive and negative regulators of the Shh pathway at the cilium tip controls the output of the pathway and that Shh signaling regulates this balance through intraflagellar transport.


Asunto(s)
Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Animales , Western Blotting , Células Cultivadas , Cilios/genética , Cilios/ultraestructura , Proteínas del Citoesqueleto , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Hedgehog/genética , Inmunohistoquímica , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Mutantes , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas/genética , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened , Proteína Gli2 con Dedos de Zinc , Proteína Gli3 con Dedos de Zinc
6.
Am J Hum Genet ; 86(6): 949-56, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20493458

RESUMEN

Cranioectodermal dysplasia (CED) is a disorder characterized by craniofacial, skeletal, and ectodermal abnormalities. Most cases reported to date are sporadic, but a few familial cases support an autosomal-recessive inheritance pattern. Aiming at the elucidation of the genetic basis of CED, we collected 13 patients with CED symptoms from 12 independent families. In one family with consanguineous parents two siblings were affected, permitting linkage analysis and homozygosity mapping. This revealed a single region of homozygosity with a significant LOD score (3.57) on chromosome 3q21-3q24. By sequencing candidate genes from this interval we found a homozygous missense mutation in the IFT122 (WDR10) gene that cosegregated with the disease. Examination of IFT122 in our patient cohort revealed one additional homozygous missense change in the patient from a second consanguineous family. In addition, we found compound heterozygosity for a donor splice-site change and a missense change in one sporadic patient. All mutations were absent in 340 control chromosomes. Because IFT122 plays an important role in the assembly and maintenance of eukaryotic cilia, we investigated patient fibroblasts and found significantly reduced frequency and length of primary cilia as compared to controls. Furthermore, we transiently knocked down ift122 in zebrafish embryos and observed the typical phenotype found in other models of ciliopathies. Because not all of our patients harbored mutations in IFT122, CED seems to be genetically heterogeneous. Still, by identifying CED as a ciliary disorder, our study suggests that the causative mutations in the unresolved cases most likely affect primary cilia function too.


Asunto(s)
Anomalías Craneofaciales/genética , Displasia Ectodérmica/genética , Proteínas/genética , Proteínas Adaptadoras Transductoras de Señales , Niño , Preescolar , Trastornos de la Motilidad Ciliar/genética , Proteínas del Citoesqueleto , Femenino , Humanos , Lactante , Masculino , Mutación
7.
Sci Adv ; 8(35): eadd2696, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36054355

RESUMEN

Vertebrate myoblast fusion allows for multinucleated muscle fibers to compound the size and strength of mononucleated cells, but the evolution of this important process is unknown. We investigated the evolutionary origins and function of membrane-coalescing agents Myomaker and Myomixer in various groups of chordates. Here, we report that Myomaker likely arose through gene duplication in the last common ancestor of tunicates and vertebrates, while Myomixer appears to have evolved de novo in early vertebrates. Functional tests revealed a complex evolutionary history of myoblast fusion. A prevertebrate phase of muscle multinucleation driven by Myomaker was followed by the later emergence of Myomixer that enables the highly efficient fusion system of vertebrates. Evolutionary comparisons between vertebrate and nonvertebrate Myomaker revealed key structural and mechanistic insights into myoblast fusion. Thus, our findings suggest an evolutionary model of chordate fusogens and illustrate how new genes shape the emergence of novel morphogenetic traits and mechanisms.

8.
Hum Mol Genet ; 18(10): 1740-54, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19286674

RESUMEN

Tubby-like protein 3 (TULP3) is required for proper embryonic development in mice. Disruption of mouse Tulp3 results in morphological defects in the embryonic craniofacial regions, the spinal neural tube and the limbs. Here, we show that TULP3 functions as a novel negative regulator of Sonic hedgehog (Shh) signaling in the mouse. In Tulp3 mutants, ventral cell types in the lumbar neural tube, which acquire their identities in response to Shh signaling, are ectopically specified at the expense of dorsal cell types. Genetic epistasis experiments show that this ventralized phenotype occurs independently of Shh and the transmembrane protein Smoothened, but it is dependent on the transcription factor Gli2. The ventralized phenotype is also dependent on the kinesin II subunit Kif3A, which is required for intraflagellar transport and ciliogenesis. In addition, TULP3 is required for proper Shh-dependent limb patterning and for maintaining the correct balance between differentiation and proliferation in the neural tube. Finally, the localization of TULP3 to the tips of primary cilia raises the possibility that it regulates the Hedgehog pathway within this structure.


Asunto(s)
Tipificación del Cuerpo , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Proteínas/metabolismo , Transducción de Señal , Animales , Regulación hacia Abajo , Embrión de Mamíferos , Femenino , Proteínas Hedgehog/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Transgénicos , Mutación , Tubo Neural/embriología , Tubo Neural/metabolismo , Proteínas/genética , Médula Espinal/embriología , Médula Espinal/metabolismo
9.
Dev Biol ; 321(1): 27-39, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18590716

RESUMEN

Signaling by Sonic hedgehog (Shh) represents an important process by which many types of neural progenitor cells become properly organized along the dorsal-ventral axis of the vertebrate neural tube in a concentration-dependent manner. However, the mechanism by which Shh signals are transduced with high fidelity and the relationship between the Shh signaling pathway and other patterning systems remain unclear. Here we focus on the role of FK506-binding protein 8 (FKBP8) in controlling neural cell identity through its antagonism of the Shh pathway. Our data indicate that disruption of FKBP8 function activates the Shh signaling pathway cell-autonomously at a step that is independent of the transmembrane protein Smoothened but dependent on the Gli2 transcription factor. This activation is also dependent on the kinesin-2 subunit Kif3a, a component of the intraflagellar transport (IFT) machinery used to generate cilia. Our data also indicate that non-cell-autonomous effects of the Fkbp8 mutation further contribute to the neural patterning phenotype and suggest that FKBP8 plays an indirect role in promoting Bone morphogenetic protein (BMP) signaling through antagonism of the Shh pathway.


Asunto(s)
Cinesinas/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Tubo Neural/citología , Tubo Neural/embriología , Transducción de Señal , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Embrión de Mamíferos/metabolismo , Proteínas Hedgehog/metabolismo , Ratones , Proteínas de Unión a Tacrolimus/genética , Proteína Gli2 con Dedos de Zinc
10.
Curr Biol ; 12(18): 1628-32, 2002 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-12372258

RESUMEN

Precise patterning of cell types along the dorsal-ventral axis of the spinal cord is essential to establish functional neural circuits. In order to prove the feasibility of studying a single biological process through random mutagenesis in the mouse, we have identified recessive ENU-induced mutations in six genes that prevent normal specification of ventral cell types in the spinal cord. We positionally cloned the genes responsible for two of the mutant phenotypes, smoothened and dispatched, which are homologs of Drosophila Hh pathway components. The Dispatched homolog1 (Disp1) mutation causes lethality at midgestation and prevents specification of ventral cell types in the neural tube, a phenotype identical to the Smoothened (Smo) null phenotype. As in Drosophila, mouse Disp1 is required to move Shh away from the site of synthesis. Despite the existence of a second mouse disp homolog, Disp1 is essential for long-range signaling by both Shh and Ihh ligands. Our data indicate that Shh signaling is required within the notochord to maintain Shh expression and to prevent notochord degeneration. Disp1, unlike Smo, is not required for this juxtacrine signaling by Shh.


Asunto(s)
Proteínas de Drosophila , Proteínas de la Membrana/fisiología , Receptores Acoplados a Proteínas G , Transactivadores/fisiología , Secuencia de Aminoácidos , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Drosophila , Desarrollo Embrionario y Fetal/genética , Proteínas Hedgehog , Hibridación in Situ , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Datos de Secuencia Molecular , Mutación , Fenotipo , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/fisiología , Homología de Secuencia de Aminoácido , Transducción de Señal , Receptor Smoothened , Transactivadores/deficiencia , Transactivadores/genética
11.
Nat Commun ; 8: 15619, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28555660

RESUMEN

While many tools exist for identifying and quantifying individual cell types, few methods are available to assess the relationships between cell types in organs and tissues and how these relationships change during aging or disease states. We present a quantitative method for evaluating cellular organization, using the mouse thymus as a test organ. The thymus is the primary lymphoid organ responsible for generating T cells in vertebrates, and its proper structure and organization is essential for optimal function. Our method, Multitaper Circularly Averaged Spectral Analysis (MiCASA), identifies differences in the tissue-level organization with high sensitivity, including defining a novel type of phenotype by measuring variability as a specific parameter. MiCASA provides a novel and easily implemented quantitative tool for assessing cellular organization.


Asunto(s)
Diagnóstico por Computador/métodos , Espectrofotometría/métodos , Médula Espinal/diagnóstico por imagen , Linfocitos T/citología , Timo/diagnóstico por imagen , Animales , Antígeno CD11c/metabolismo , Genotipo , Procesamiento de Imagen Asistido por Computador/métodos , Tejido Linfoide/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fenotipo , Médula Espinal/embriología
12.
Elife ; 62017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28562242

RESUMEN

Intraflagellar transport (IFT) trains, multimegadalton assemblies of IFT proteins and motors, traffic proteins in cilia. To study how trains assemble, we employed fluorescence protein-tagged IFT proteins in Chlamydomonas reinhardtii. IFT-A and motor proteins are recruited from the cell body to the basal body pool, assembled into trains, move through the cilium, and disperse back into the cell body. In contrast to this 'open' system, IFT-B proteins from retrograde trains reenter the pool and a portion is reused directly in anterograde trains indicating a 'semi-open' system. Similar IFT systems were also observed in Tetrahymena thermophila and IMCD3 cells. FRAP analysis indicated that IFT proteins and motors of a given train are sequentially recruited to the basal bodies. IFT dynein and tubulin cargoes are loaded briefly before the trains depart. We conclude that the pool contains IFT trains in multiple stages of assembly queuing for successive release into the cilium upon completion.


Asunto(s)
Proteínas Portadoras/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cilios/metabolismo , Sustancias Macromoleculares/metabolismo , Biogénesis de Organelos , Multimerización de Proteína , Recuperación de Fluorescencia tras Fotoblanqueo
13.
Dev Cell ; 56(3): 257-259, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33561421
14.
Methods Mol Biol ; 1092: 95-118, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24318816

RESUMEN

The completion of the human and mouse genome projects at the beginning of the past decade represented a very important step forward in our pursuit of a comprehensive understanding of the genetic control of mammalian development. Nevertheless, genetic analyses of mutant phenotypes are still needed to understand the function of individual genes. The genotype-based approaches, including gene-trapping and gene-targeting, promise a mutant embryonic stem (ES) cell resource for all the genes in mouse genome; however, the phenotypic consequences of these mutations will not be addressed until mutant mice are derived from these ES cells, which is not trivial. An efficient and non-biased, N-ethyl-N-nitrosourea (ENU)-based forward genetic approach in mouse provides a unique tool for the identification of genes essential for development and adult physiology. We have had great success in identifying genes essential for morphogenesis and early patterning of mouse via this approach. Combined with complete genome information and numerous genetic resources available, ENU-based mutagenesis has become a powerful tool in deciphering gene functions.


Asunto(s)
Células Madre Embrionarias/metabolismo , Genes Esenciales , Morfogénesis , Animales , Embrión de Mamíferos , Células Madre Embrionarias/citología , Etilnitrosourea/toxicidad , Genoma , Humanos , Ratones , Biología Molecular/métodos
15.
Dev Cell ; 23(4): 677-8, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-23079593

RESUMEN

Hedgehog signaling is transduced at the primary cilium, but the precise mechanisms underlying this action are not clear. In this issue of Developmental Cell, Dorn and colleagues (2012) describe a novel mechanism for control of Hedgehog signaling by Evc proteins within the primary cilium.

16.
J Clin Invest ; 122(12): 4505-18, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23143302

RESUMEN

Mps one binder 1a (MOB1A) and MOB1B are key components of the Hippo signaling pathway and are mutated or inactivated in many human cancers. Here we show that intact Mob1a or Mob1b is essential for murine embryogenesis and that loss of the remaining WT Mob1 allele in Mob1a(Δ/Δ)1b(tr/+) or Mob1a(Δ/+)1b(tr/tr) mice results in tumor development. Because most of these cancers resembled trichilemmal carcinomas, we generated double-mutant mice bearing tamoxifen-inducible, keratinocyte-specific homozygous-null mutations of Mob1a and Mob1b (kDKO mice). kDKO mice showed hyperplastic keratinocyte progenitors and defective keratinocyte terminal differentiation and soon died of malnutrition. kDKO keratinocytes exhibited hyperproliferation, apoptotic resistance, impaired contact inhibition, enhanced progenitor self renewal, and increased centrosomes. Examination of Hippo pathway signaling in kDKO keratinocytes revealed that loss of Mob1a/b altered the activities of the downstream Hippo mediators LATS and YAP1. Similarly, YAP1 was activated in some human trichilemmal carcinomas, and some of these also exhibited MOB1A/1B inactivation. Our results clearly demonstrate that MOB1A and MOB1B have overlapping functions in skin homeostasis, and exert their roles as tumor suppressors by regulating downstream elements of the Hippo pathway.


Asunto(s)
Carcinoma/genética , Genes Letales , Fosfoproteínas/genética , Proteínas Quinasas/genética , Neoplasias Cutáneas/genética , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Proteínas Adaptadoras Transductoras de Señales , Animales , Carcinoma/patología , Diferenciación Celular , Transformación Celular Neoplásica/genética , Células Cultivadas , Técnicas de Cultivo de Embriones , Embrión de Mamíferos/patología , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Homeostasis , Homocigoto , Humanos , Péptidos y Proteínas de Señalización Intracelular , Queratinocitos/patología , Queratinocitos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias/genética , Neoplasias/patología , Fosfoproteínas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Piel/metabolismo , Piel/patología , Anomalías Cutáneas/genética , Anomalías Cutáneas/patología , Neoplasias Cutáneas/patología , Proteínas Supresoras de Tumor/metabolismo
17.
Nat Genet ; 43(6): 547-53, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21552265

RESUMEN

Cilia-associated human genetic disorders are striking in the diversity of their abnormalities and their complex inheritance. Inactivation of the retrograde ciliary motor by mutations in DYNC2H1 causes skeletal dysplasias that have strongly variable expressivity. Here we define previously unknown genetic relationships between Dync2h1 and other genes required for ciliary trafficking. Mutations in mouse Dync2h1 disrupt cilia structure, block Sonic hedgehog signaling and cause midgestation lethality. Heterozygosity for Ift172, a gene required for anterograde ciliary trafficking, suppresses cilia phenotypes, Sonic hedgehog signaling defects and early lethality of Dync2h1 homozygotes. Ift122, like Dync2h1, is required for retrograde ciliary trafficking, but reduction of Ift122 gene dosage also suppresses the Dync2h1 phenotype. These genetic interactions illustrate the cell biology underlying ciliopathies and argue that mutations in intraflagellar transport genes cause their phenotypes because of their roles in cilia architecture rather than direct roles in signaling.


Asunto(s)
Cilios/genética , Dineínas Citoplasmáticas/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto , Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , Ratones , Mutación
18.
Dev Cell ; 18(2): 237-47, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20159594

RESUMEN

Recent findings indicate that mammalian Sonic hedgehog (Shh) signal transduction occurs within primary cilia, although the cell biological mechanisms underlying both Shh signaling and ciliogenesis have not been fully elucidated. We show that an uncharacterized TBC domain-containing protein, Broad-minded (Bromi), is required for high-level Shh responses in the mouse neural tube. We find that Bromi controls ciliary morphology and proper Gli2 localization within the cilium. By use of a zebrafish model, we further show that Bromi is required for proper association between the ciliary membrane and axoneme. Bromi physically interacts with cell cycle-related kinase (CCRK), whose Chlamydomonas homolog regulates flagellar length. Biochemical and genetic interaction data indicate that Bromi promotes CCRK stability and function. We propose that Bromi and CCRK control the structure of the primary cilium by coordinating assembly of the axoneme and ciliary membrane, allowing Gli proteins to be properly activated in response to Shh signaling.


Asunto(s)
Proteínas Portadoras/fisiología , Cilios/fisiología , Quinasas Ciclina-Dependientes/fisiología , Proteínas Hedgehog/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Secuencia de Bases , Tipificación del Cuerpo , Proteínas Portadoras/genética , Cilios/ultraestructura , Clonación Molecular , ADN/genética , Estabilidad de Enzimas , Epistasis Genética , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Mutación , Tubo Neural/embriología , Embarazo , Transducción de Señal , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Quinasa Activadora de Quinasas Ciclina-Dependientes
19.
Methods Cell Biol ; 93: 347-69, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20409825

RESUMEN

Intraflagellar transport (IFT) has been studied for decades in model systems such as Chlamydomonas and Caenorhabditis elegans. More recently, IFT has been investigated using genetic approaches in mammals using the mouse as a model system. Through such studies, a new appreciation of the importance of IFT and cilia in mammalian signal transduction has emerged. Specifically, IFT has been shown to play a key role in controlling signaling by Sonic and Indian Hedgehog (Hh) ligands. The effects of mutations in IFT components on Sonic Hh signaling in the embryo are complex and differ depending on the nature of the components, alleles, and tissues examined. For this reason, we provide a basis for analyzing the phenotype as a guide for those investigators who study IFT in cell culture or use invertebrate systems and wish to extend their studies to include development of the mouse embryo. We provide an overview of Sonic Hh-dependent tissue patterning in the developing neural tube and limb buds, the two systems in which it has been studied most extensively, and we show examples of how this patterning is disrupted by mutations in mouse IFT components.


Asunto(s)
Transporte Biológico/genética , Tipificación del Cuerpo/fisiología , Flagelos , Proteínas Hedgehog/metabolismo , Mutación , Transducción de Señal/fisiología , Animales , Transporte Biológico/fisiología , Cilios/metabolismo , Cilios/ultraestructura , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Flagelos/metabolismo , Flagelos/ultraestructura , Proteínas Hedgehog/genética , Inmunohistoquímica/instrumentación , Inmunohistoquímica/métodos , Hibridación in Situ/instrumentación , Hibridación in Situ/métodos , Ratones
20.
Annu Rev Cell Dev Biol ; 23: 345-73, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17506691

RESUMEN

Recent studies have revealed unexpected connections between the mammalian Hedgehog (Hh) signal transduction pathway and the primary cilium, a microtubule-based organelle that protrudes from the surface of most vertebrate cells. Intraflagellar transport proteins, which are required for the construction of cilia, are essential for all responses to mammalian Hh proteins, and proteins required for Hh signal transduction are enriched in primary cilia. The phenotypes of different mouse mutants that affect ciliary proteins suggest that cilia may act as processive machines that organize sequential steps in the Hh signal transduction pathway. Cilia on vertebrate cells are likely to be important in additional developmental signaling pathways and are required for PDGF receptor alpha signaling in cultured fibroblasts. Cilia are not essential for either canonical or noncanonical Wnt signaling, although cell-type-specific modulation of cilia components may link cilia and Wnt signaling in some tissues. Because ciliogenesis in invertebrates is limited to a very small number of specialized cell types, the role of cilia in developmental signaling pathways is likely a uniquely vertebrate phenomenon.


Asunto(s)
Tipificación del Cuerpo , Cilios/fisiología , Proteínas Hedgehog/metabolismo , Tubo Neural/crecimiento & desarrollo , Animales , Enfermedades Genéticas Congénitas/metabolismo , Humanos , Ratones , Transporte de Proteínas/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA