Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Cancer ; 148(10): 2579-2593, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33210294

RESUMEN

In non-small cell lung cancer (NSCLC), activating mutations in the epidermal growth factor receptor (EGFR) induce sensitivity to EGFR tyrosine kinase inhibitors. Despite impressive clinical responses, patients ultimately relapse as a reservoir of drug-tolerant cells persist, which ultimately leads to acquired resistance mechanisms. We performed an unbiased high-throughput siRNA screen to identify proteins that abrogate the response of EGFR-mutant NSCLC to EGFR-targeted therapy. The deubiquitinase USP13 was a top hit resulting from this screen. Targeting USP13 increases the sensitivity to EGFR inhibition with small molecules in vitro and in vivo. USP13 selectively stabilizes mutant EGFR in a peptidase-independent manner by counteracting the action of members of the Cbl family of E3 ubiquitin ligases. We conclude that USP13 is a strong mutant EGFR-specific cotarget that could improve the treatment efficacy of EGFR-targeted therapies.

2.
Cancers (Basel) ; 15(9)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37174055

RESUMEN

Tyrosine kinase inhibitors (TKI) targeting the epidermal growth factor receptor (EGFR) have significantly prolonged survival in EGFR-mutant non-small cell lung cancer patients. However, the development of resistance mechanisms prohibits the curative potential of EGFR TKIs. Combination therapies emerge as a valuable approach to preventing or delaying disease progression. Here, we investigated the combined inhibition of polo-like kinase 1 (PLK1) and EGFR in TKI-sensitive EGFR-mutant NSCLC cells. The pharmacological inhibition of PLK1 destabilized EGFR levels and sensitized NSCLC cells to Osimertinib through induction of apoptosis. In addition, we found that c-Cbl, a ubiquitin ligase of EGFR, is a direct phosphorylation target of PLK1 and PLK1 impacts the stability of c-Cbl in a kinase-dependent manner. In conclusion, we describe a novel interaction between mutant EGFR and PLK1 that may be exploited in the clinic. Co-targeting PLK1 and EGFR may improve and prolong the clinical response to EGFR TKI in patients with an EGFR-mutated NSCLC.

3.
Cell Death Dis ; 13(7): 611, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840561

RESUMEN

Non-small cell lung cancer (NSCLC) patients harboring activating mutations in epidermal growth factor receptor (EGFR) are sensitive to therapy with EGFR tyrosine kinase inhibitors (TKI). Despite remarkable clinical responses using EGFR TKI, surviving drug tolerant cells serve as a reservoir from which drug resistant tumors may emerge. This study addresses the need for improved efficacy of EGFR TKI by identifying targets involved in functional drug tolerance against them. To this aim, a high-throughput siRNA kinome screen was performed using two EGFR TKI-sensitive EGFR-mutant NSCLC cell lines in the presence/absence of the second-generation EGFR TKI afatinib. From the screen, Serine/Threonine/Tyrosine Kinase 1 (STYK1) was identified as a target that when downregulated potentiates the effects of EGFR inhibition in vitro. We found that chemical inhibition of EGFR combined with the siRNA-mediated knockdown of STYK1 led to a significant decrease in cancer cell viability and anchorage-independent cell growth. Further, we show that STYK1 selectively interacts with mutant EGFR and that the interaction is disrupted upon EGFR inhibition. Finally, we identified fibroblast growth factor 1 (FGF1) as a downstream effector of STYK1 in NSCLC cells. Accordingly, downregulation of STYK1 counteracted the afatinib-induced upregulation of FGF1. Altogether, we unveil STYK1 as a valuable target to repress the pool of surviving drug tolerant cells arising upon EGFR inhibition. Co-targeting of EGFR and STYK1 could lead to a better overall outcome for NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Tolerancia a Medicamentos , Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas , Afatinib/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Resistencia a Antineoplásicos/genética , Tolerancia a Medicamentos/genética , Tolerancia a Medicamentos/fisiología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , ARN Interferente Pequeño/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo
4.
Oncogene ; 38(31): 5933-5941, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31285551

RESUMEN

Two out of 41 non-small cell lung cancer patients enrolled in a clinical study were found with a somatic CRAF mutation in their tumor, namely CRAFP261A and CRAFP207S. To our knowledge, both mutations are novel in lung cancer and CRAFP261A has not been previously reported in cancer. Expression of CRAFP261A in HEK293T cells and BEAS-2B lung epithelial cells led to increased ERK pathway activation in a dimer-dependent manner, accompanied with loss of CRAF phosphorylation at the negative regulatory S259 residue. Moreover, stable expression of CRAFP261A in mouse embryonic fibroblasts and BEAS-2B cells led to anchorage-independent growth. Consistent with a previous report, we could not observe a gain-of-function with CRAFP207S. Type II but not type I RAF inhibitors suppressed the CRAFP261A-induced ERK pathway activity in BEAS-2B cells, and combinatorial treatment with type II RAF inhibitors and a MEK inhibitor led to a stronger ERK pathway inhibition and growth arrest. Our findings suggest that the acquisition of a CRAFP261A mutation can provide oncogenic properties to cells, and that such cells are sensitive to combined MEK and type II RAF inhibitors. CRAF mutations should be diagnostically and therapeutically explored in lung and perhaps other cancers.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Mutación , Proteínas Proto-Oncogénicas c-raf/genética , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Células HEK293 , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-raf/antagonistas & inhibidores
5.
Oncotarget ; 9(22): 16110-16123, 2018 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-29662630

RESUMEN

A large fraction of somatic driver BRAF mutations in lung cancer are non-V600 and impaired-kinase. Non-V600 BRAF mutations predict sensitivity to combination of a type I RAF inhibitor, Dabrafenib, and a MEK inhibitor, Trametinib. Singly, Dabrafenib only weakly suppresses mutant BRAF-induced ERK signaling and can induce ERK paradoxical activation in CRAF-overexpressing cells. The present study compared the effects of Dabrafenib and a type II RAF inhibitor, AZ628, on ERK activity in HEK293T cells expressing several tumor-derived BRAF mutants, and in a non-V600 and impaired-kinase BRAF-mutant lung cancer cell line (H1666). Unlike Dabrafenib, AZ628 did not induce paradoxical ERK activation in CRAF-overexpressing cells and BRAF-mutant cells overexpressing CRAF were more responsive to AZ628 compared to Dabrafenib in terms of ERK inhibition. AZ628 inhibited ERK more effectively than Dabrafenib in both H1666 cells and HEK293T cells co-expressing several different BRAF-mutants with CRAF. Similarly, AZ628 plus Trametinib had better MEK-inhibitory and pro-apoptotic effects in H1666 cells than Dabrafenib plus Trametinib. Moreover, prolonged treatment of H1666 cells with AZ628 plus Trametinib produced greater inhibition of cell growth than Dabrafenib plus Trametinib. These results indicate that AZ628 has greater potential than Dabrafenib, both as a single agent and combined with Trametinib, for the treatment of non-V600 BRAF mutant lung cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA