Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Dev Dyn ; 251(1): 61-74, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34716737

RESUMEN

The intestinal epithelium is a tissue with high cell turnover, supported by adult intestinal stem cells. Intestinal homeostasis is underpinned by crypt basal columnar stem cells, marked by expression of the LGR5 gene. However, recent research has demonstrated considerable stem cell plasticity following injury, with dedifferentiation of a range of other intestinal cell populations, induced by a permissive microenvironment in the regenerating mucosa. The regulation of this profound adaptive cell reprogramming response is the subject of current research. There is a demonstrable contribution from disruption of key homeostatic signaling pathways such as wingless-related integration site and bone morphogenetic protein, and an emerging signaling hub role for the mechanoreceptor transducers Yes-associated protein 1/transcriptional coactivator with PDZ-binding motif, negatively regulated by the Hippo pathway. However, a number of outstanding questions remain, including a need to understand how tissues sense damage, and how pathways intersect to mediate dynamic changes in the stem cell population. Better understanding of these pathways, associated functional redundancies, and how they may be both enhanced for recovery of inflammatory diseases, and co-opted in neoplasia development, may have significant clinical implications, and could lead to development of more targeted molecular therapies which target individual stem or stem-like cell populations.


Asunto(s)
Plasticidad de la Célula , Células Madre , Adulto , Carcinogénesis/metabolismo , Humanos , Mucosa Intestinal , Intestinos , Microambiente Tumoral
2.
Cell Stem Cell ; 29(8): 1213-1228.e8, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931031

RESUMEN

Intestinal homeostasis is underpinned by LGR5+ve crypt-base columnar stem cells (CBCs), but following injury, dedifferentiation results in the emergence of LGR5-ve regenerative stem cell populations (RSCs), characterized by fetal transcriptional profiles. Neoplasia hijacks regenerative signaling, so we assessed the distribution of CBCs and RSCs in mouse and human intestinal tumors. Using combined molecular-morphological analysis, we demonstrate variable expression of stem cell markers across a range of lesions. The degree of CBC-RSC admixture was associated with both epithelial mutation and microenvironmental signaling disruption and could be mapped across disease molecular subtypes. The CBC-RSC equilibrium was adaptive, with a dynamic response to acute selective pressure, and adaptability was associated with chemoresistance. We propose a fitness landscape model where individual tumors have equilibrated stem cell population distributions along a CBC-RSC phenotypic axis. Cellular plasticity is represented by position shift along this axis and is influenced by cell-intrinsic, extrinsic, and therapeutic selective pressures.


Asunto(s)
Neoplasias Colorrectales , Mucosa Intestinal , Animales , Neoplasias Colorrectales/patología , Homeostasis/fisiología , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Ratones , Células Madre Neoplásicas/patología , Receptores Acoplados a Proteínas G/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA