Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Soil Biol Biochem ; 136: 107521, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31700196

RESUMEN

Microorganisms are critical in mediating carbon (C) and nitrogen (N) cycling processes in soils. Yet, it has long been debated whether the processes underlying biogeochemical cycles are affected by the composition and diversity of the soil microbial community or not. The composition and diversity of soil microbial communities can be influenced by various environmental factors, which in turn are known to impact biogeochemical processes. The objectives of this study were to test effects of multiple edaphic drivers individually and represented as the multivariate soil environment interacting with microbial community composition and diversity, and concomitantly on multiple soil functions (i.e. soil enzyme activities, soil C and N processes). We employed high-throughput sequencing (Illumina MiSeq) to analyze bacterial/archaeal and fungal community composition by targeting the 16S rRNA gene and the ITS1 region of soils collected from three land uses (cropland, grassland and forest) deriving from two bedrock forms (silicate and limestone). Based on this data set we explored single and combined effects of edaphic variables on soil microbial community structure and diversity, as well as on soil enzyme activities and several soil C and N processes. We found that both bacterial/archaeal and fungal communities were shaped by the same edaphic factors, with most single edaphic variables and the combined soil environment representation exerting stronger effects on bacterial/archaeal communities than on fungal communities, as demonstrated by (partial) Mantel tests. We also found similar edaphic controls on the bacterial/archaeal/fungal richness and diversity. Soil C processes were only directly affected by the soil environment but not affected by microbial community composition. In contrast, soil N processes were significantly related to bacterial/archaeal community composition and bacterial/archaeal/fungal richness/diversity but not directly affected by the soil environment. This indicates direct control of the soil environment on soil C processes and indirect control of the soil environment on soil N processes by structuring the microbial communities. The study further highlights the importance of edaphic drivers and microbial communities (i.e. composition and diversity) on important soil C and N processes.

2.
Environ Microbiol ; 20(3): 1041-1063, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29327410

RESUMEN

Members of the phylum Acidobacteria are abundant and ubiquitous across soils. We performed a large-scale comparative genome analysis spanning subdivisions 1, 3, 4, 6, 8 and 23 (n = 24) with the goal to identify features to help explain their prevalence in soils and understand their ecophysiology. Our analysis revealed that bacteriophage integration events along with transposable and mobile elements influenced the structure and plasticity of these genomes. Low- and high-affinity respiratory oxygen reductases were detected in multiple genomes, suggesting the capacity for growing across different oxygen gradients. Among many genomes, the capacity to use a diverse collection of carbohydrates, as well as inorganic and organic nitrogen sources (such as via extracellular peptidases), was detected - both advantageous traits in environments with fluctuating nutrient environments. We also identified multiple soil acidobacteria with the potential to scavenge atmospheric concentrations of H2 , now encompassing mesophilic soil strains within the subdivision 1 and 3, in addition to a previously identified thermophilic strain in subdivision 4. This large-scale acidobacteria genome analysis reveal traits that provide genomic, physiological and metabolic versatility, presumably allowing flexibility and versatility in the challenging and fluctuating soil environment.


Asunto(s)
Acidobacteria/genética , Bacteriófagos/genética , Elementos Transponibles de ADN/genética , ADN Bacteriano/genética , Genoma Bacteriano/genética , Acidobacteria/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Genómica , Nitrificación/genética , Fijación del Nitrógeno/genética , Oxígeno/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo/química , Microbiología del Suelo
3.
Environ Microbiol ; 20(1): 44-61, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29027346

RESUMEN

Investigating active participants in the fixation of dinitrogen gas is vital as N is often a limiting factor for primary production. Biological nitrogen fixation is performed by a diverse guild of bacteria and archaea (diazotrophs), which can be free-living or symbionts. Free-living diazotrophs are widely distributed in the environment, yet our knowledge about their identity and ecophysiology is still limited. A major challenge in investigating this guild is inferring activity from genetic data as this process is highly regulated. To address this challenge, we evaluated and improved several 15 N-based methods for detecting N2 fixation activity (with a focus on soil samples) and studying active diazotrophs. We compared the acetylene reduction assay and the 15 N2 tracer method and demonstrated that the latter is more sensitive in samples with low activity. Additionally, tracing 15 N into microbial RNA provides much higher sensitivity compared to bulk soil analysis. Active soil diazotrophs were identified with a 15 N-RNA-SIP approach optimized for environmental samples and benchmarked to 15 N-DNA-SIP. Lastly, we investigated the feasibility of using SIP-Raman microspectroscopy for detecting 15 N-labelled cells. Taken together, these tools allow identifying and investigating active free-living diazotrophs in a highly sensitive manner in diverse environments, from bulk to the single-cell level.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Marcaje Isotópico/métodos , Fijación del Nitrógeno/fisiología , Isótopos de Nitrógeno/análisis , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Fijación del Nitrógeno/genética , Isótopos de Nitrógeno/química , Microbiología del Suelo , Espectrometría Raman/métodos
5.
Appl Environ Microbiol ; 80(23): 7423-32, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25261509

RESUMEN

Microbial communities that deconstruct plant biomass have broad relevance in biofuel production and global carbon cycling. Biomass pretreatments reduce plant biomass recalcitrance for increased efficiency of enzymatic hydrolysis. We exploited these chemical pretreatments to study how thermophilic bacterial consortia adapt to deconstruct switchgrass (SG) biomass of various compositions. Microbial communities were adapted to untreated, ammonium fiber expansion (AFEX)-pretreated, and ionic-liquid (IL)-pretreated SG under aerobic, thermophilic conditions using green waste compost as the inoculum to study biomass deconstruction by microbial consortia. After microbial cultivation, gravimetric analysis of the residual biomass demonstrated that both AFEX and IL pretreatment enhanced the deconstruction of the SG biomass approximately 2-fold. Two-dimensional nuclear magnetic resonance (2D-NMR) experiments and acetyl bromide-reactive-lignin analysis indicated that polysaccharide hydrolysis was the dominant process occurring during microbial biomass deconstruction, and lignin remaining in the residual biomass was largely unmodified. Small-subunit (SSU) rRNA gene amplicon libraries revealed that although the dominant taxa across these chemical pretreatments were consistently represented by members of the Firmicutes, the Bacteroidetes, and Deinococcus-Thermus, the abundance of selected operational taxonomic units (OTUs) varied, suggesting adaptations to the different substrates. Combining the observations of differences in the community structure and the chemical and physical structure of the biomass, we hypothesize specific roles for individual community members in biomass deconstruction.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Biota , Consorcios Microbianos , Panicum/metabolismo , Aerobiosis , Bacterias/clasificación , Biomasa , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Lignina/metabolismo , Datos de Secuencia Molecular , Polisacáridos/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Temperatura
6.
Appl Environ Microbiol ; 80(10): 3103-12, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24610855

RESUMEN

Biological nitrogen fixation is the primary supply of N to most ecosystems, yet there is considerable uncertainty about how N-fixing bacteria will respond to global change factors such as increasing atmospheric CO2 and N deposition. Using the nifH gene as a molecular marker, we studied how the community structure of N-fixing soil bacteria from temperate pine, aspen, and sweet gum stands and a brackish tidal marsh responded to multiyear elevated CO2 conditions. We also examined how N availability, specifically, N fertilization, interacted with elevated CO2 to affect these communities in the temperate pine forest. Based on data from Sanger sequencing and quantitative PCR, the soil nifH composition in the three forest systems was dominated by species in the Geobacteraceae and, to a lesser extent, Alphaproteobacteria. The N-fixing-bacterial-community structure was subtly altered after 10 or more years of elevated atmospheric CO2, and the observed shifts differed in each biome. In the pine forest, N fertilization had a stronger effect on nifH community structure than elevated CO2 and suppressed the diversity and abundance of N-fixing bacteria under elevated atmospheric CO2 conditions. These results indicate that N-fixing bacteria have complex, interacting responses that will be important for understanding ecosystem productivity in a changing climate.


Asunto(s)
Bacterias/metabolismo , Dióxido de Carbono/análisis , Nitrógeno/metabolismo , Microbiología del Suelo , Aire/análisis , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Dióxido de Carbono/metabolismo , Clima , Ecosistema , Fertilizantes/análisis , Fijación del Nitrógeno , Suelo/química
7.
Nucleic Acids Res ; 40(12): e96, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22434885

RESUMEN

Environmental biosurveillance and microbial ecology studies use PCR-based assays to detect and quantify microbial taxa and gene sequences within a complex background of microorganisms. However, the fragmentary nature and growing quantity of DNA-sequence data make group-specific assay design challenging. We solved this problem by developing a software platform that enables PCR-assay design at an unprecedented scale. As a demonstration, we developed quantitative PCR assays for a globally widespread, ecologically important bacterial group in soil, Acidobacteria Group 1. A total of 33,684 Acidobacteria 16S rRNA gene sequences were used for assay design. Following 1 week of computation on a 376-core cluster, 83 assays were obtained. We validated the specificity of the top three assays, collectively predicted to detect 42% of the Acidobacteria Group 1 sequences, by PCR amplification and sequencing of DNA from soil. Based on previous analyses of 16S rRNA gene sequencing, Acidobacteria Group 1 species were expected to decrease in response to elevated atmospheric CO(2). Quantitative PCR results, using the Acidobacteria Group 1-specific PCR assays, confirmed the expected decrease and provided higher statistical confidence than the 16S rRNA gene-sequencing data. These results demonstrate a powerful capacity to address previously intractable assay design challenges.


Asunto(s)
Acidobacteria/aislamiento & purificación , Cartilla de ADN/química , Reacción en Cadena de la Polimerasa/métodos , Programas Informáticos , Microbiología del Suelo , Acidobacteria/genética , Algoritmos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
8.
Nat Commun ; 15(1): 3056, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632260

RESUMEN

Microbial activity in drylands tends to be confined to rare and short periods of rain. Rapid growth should be key to the maintenance of ecosystem processes in such narrow activity windows, if desiccation and rehydration cause widespread cell death due to osmotic stress. Here, simulating rain with 2H2O followed by single-cell NanoSIMS, we show that biocrust microbial communities in the Negev Desert are characterized by limited productivity, with median replication times of 6 to 19 days and restricted number of days allowing growth. Genome-resolved metatranscriptomics reveals that nearly all microbial populations resuscitate within minutes after simulated rain, independent of taxonomy, and invest their activity into repair and energy generation. Together, our data reveal a community that makes optimal use of short activity phases by fast and universal resuscitation enabling the maintenance of key ecosystem functions. We conclude that desert biocrust communities are highly adapted to surviving rapid changes in soil moisture and solute concentrations, resulting in high persistence that balances limited productivity.


Asunto(s)
Ecosistema , Microbiota , Clima Desértico , Microbiología del Suelo , Lluvia , Suelo
9.
Commun Biol ; 7(1): 846, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987659

RESUMEN

Fixation of atmospheric N2 by free-living diazotrophs accounts for an important proportion of nitrogen naturally introduced to temperate grasslands. The effect of plants or fertilization on the general microbial community has been extensively studied, yet an understanding of the potential combinatorial effects on the community structure and activity of free-living diazotrophs is lacking. In this study we provide a multilevel assessment of the single and interactive effects of different long-term fertilization treatments, plant species and vicinity to roots on the free-living diazotroph community in relation to the general microbial community in grassland soils. We sequenced the dinitrogenase reductase (nifH) and the 16S rRNA genes of bulk soil and root-associated compartments (rhizosphere soil, rhizoplane and root) of two grass species (Arrhenatherum elatius and Anthoxanthum odoratum) and two herb species (Galium album and Plantago lanceolata) growing in Austrian grassland soils treated with different fertilizers (N, P, NPK) since 1960. Overall, fertilization has the strongest effect on the diazotroph and general microbial community structure, however with vicinity to the root, the plant effect increases. Despite the long-term fertilization, plants strongly influence the diazotroph communities emphasizing the complexity of soil microbial communities' responses to changing nutrient conditions in temperate grasslands.


Asunto(s)
Fertilizantes , Pradera , Raíces de Plantas , Microbiología del Suelo , Raíces de Plantas/microbiología , Fertilizantes/análisis , Poaceae , Fijación del Nitrógeno , Suelo/química , ARN Ribosómico 16S/genética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Rizosfera
10.
Environ Microbiol ; 15(9): 2573-87, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23763762

RESUMEN

Enzymatic hydrolysis of cellulose is a key process in the global carbon cycle and the industrial conversion of biomass to biofuels. In natural environments, cellulose hydrolysis is predominately performed by microbial communities. However, detailed understanding of bacterial cellulose hydrolysis is primarily confined to a few model isolates. Developing models for cellulose hydrolysis by mixed microbial consortia will complement these isolate studies and may reveal new mechanisms for cellulose deconstruction. Microbial communities were adapted to microcrystalline cellulose under aerobic, thermophilic conditions using green waste compost as the inoculum to study cellulose hydrolysis in a microbial consortium. This adaptation selected for three dominant taxa--the Firmicutes, Bacteroidetes and Thermus. A high-resolution profile of community development during the enrichment demonstrated a community transition from Firmicutes to a novel Bacteroidetes population that clusters in the Chitinophagaceae family. A representative strain of this population, strain NYFB, was successfully isolated, and sequencing of a nearly full-length 16S rRNA gene demonstrated that it was only 86% identical compared with other validated strains in the phylum Bacteroidetes. Strain NYFB grew well on soluble polysaccharide substrates, but grew poorly on insoluble polysaccharide substrates. Similar communities were observed in companion thermophilic enrichments on insoluble wheat arabinoxylan, a hemicellulosic substrate, suggesting a common model for deconstruction of plant polysaccharides. Combining observations of community dynamics and the physiology of strain NYFB, a cooperative successional model for polysaccharide hydrolysis by the Firmicutes and Bacteroidetes in the thermophilic cellulolytic consortia is proposed.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biodiversidad , Celulosa/metabolismo , Consorcios Microbianos/fisiología , Microbiología del Suelo , Bacterias/clasificación , Bacterias/enzimología , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Bacteroidetes/metabolismo , Biocombustibles , Biomasa , Glicósido Hidrolasas/metabolismo , Consorcios Microbianos/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Suelo , Xilanos/metabolismo
11.
Environ Microbiol ; 14(5): 1145-58, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22264231

RESUMEN

Six terrestrial ecosystems in the USA were exposed to elevated atmospheric CO(2) in single or multifactorial experiments for more than a decade to assess potential impacts. We retrospectively assessed soil bacterial community responses in all six-field experiments and found ecosystem-specific and common patterns of soil bacterial community response to elevated CO(2) . Soil bacterial composition differed greatly across the six ecosystems. No common effect of elevated atmospheric CO(2) on bacterial biomass, richness and community composition across all of the ecosystems was identified, although significant responses were detected in individual ecosystems. The most striking common trend across the sites was a decrease of up to 3.5-fold in the relative abundance of Acidobacteria Group 1 bacteria in soils exposed to elevated CO(2) or other climate factors. The Acidobacteria Group 1 response observed in exploratory 16S rRNA gene clone library surveys was validated in one ecosystem by 100-fold deeper sequencing and semi-quantitative PCR assays. Collectively, the 16S rRNA gene sequencing approach revealed influences of elevated CO(2) on multiple ecosystems. Although few common trends across the ecosystems were detected in the small surveys, the trends may be harbingers of more substantive changes in less abundant, more sensitive taxa that can only be detected by deeper surveys. Representative bacterial 16S rRNA gene clone sequences were deposited in GenBank with Accession No. JQ366086­JQ387568.


Asunto(s)
Bacterias/metabolismo , Dióxido de Carbono/metabolismo , Ecosistema , Microbiología del Suelo , Acidobacteria/genética , Bacterias/genética , Biodiversidad , Biomasa , Dióxido de Carbono/análisis , Genes de ARNr/genética , Suelo/análisis , Estados Unidos
12.
Appl Environ Microbiol ; 78(7): 2316-27, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22287013

RESUMEN

Many bacteria and fungi are known to degrade cellulose in culture, but their combined response to cellulose in different soils is unknown. Replicate soil microcosms amended with [(13)C]cellulose were used to identify bacterial and fungal communities responsive to cellulose in five geographically and edaphically different soils. The diversity and composition of the cellulose-responsive communities were assessed by DNA-stable isotope probing combined with Sanger sequencing of small-subunit and large-subunit rRNA genes for the bacterial and fungal communities, respectively. In each soil, the (13)C-enriched, cellulose-responsive communities were of distinct composition compared to the original soil community or (12)C-nonenriched communities. The composition of cellulose-responsive taxa, as identified by sequence operational taxonomic unit (OTU) similarity, differed in each soil. When OTUs were grouped at the bacterial order level, we found that members of the Burkholderiales, Caulobacteriales, Rhizobiales, Sphingobacteriales, Xanthomonadales, and the subdivision 1 Acidobacteria were prevalent in the (13)C-enriched DNA in at least three of the soils. The cellulose-responsive fungi were identified as members of the Trichocladium, Chaetomium, Dactylaria, and Arthrobotrys genera, along with two novel Ascomycota clusters, unique to one soil. Although similarities were identified in higher-level taxa among some soils, the composition of cellulose-responsive bacteria and fungi was generally unique to a certain soil type, suggesting a strong potential influence of multiple edaphic factors in shaping the community.


Asunto(s)
Bacterias/clasificación , Isótopos de Carbono/metabolismo , Celulosa/metabolismo , Centrifugación Isopicnica/métodos , ADN de Hongos/análisis , Hongos/clasificación , Microbiología del Suelo , Bacterias/genética , ADN Bacteriano/análisis , ADN Bacteriano/genética , ADN de Hongos/genética , Ecosistema , Hongos/genética , Geografía , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Suelo/análisis , Suelo/química , Agua
13.
Appl Environ Microbiol ; 78(5): 1523-33, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22194300

RESUMEN

Taxonomic and phylogenetic fingerprinting based on sequence analysis of gene fragments from the large-subunit rRNA (LSU) gene or the internal transcribed spacer (ITS) region is becoming an integral part of fungal classification. The lack of an accurate and robust classification tool trained by a validated sequence database for taxonomic placement of fungal LSU genes is a severe limitation in taxonomic analysis of fungal isolates or large data sets obtained from environmental surveys. Using a hand-curated set of 8,506 fungal LSU gene fragments, we determined the performance characteristics of a naïve Bayesian classifier across multiple taxonomic levels and compared the classifier performance to that of a sequence similarity-based (BLASTN) approach. The naïve Bayesian classifier was computationally more rapid (>460-fold with our system) than the BLASTN approach, and it provided equal or superior classification accuracy. Classifier accuracies were compared using sequence fragments of 100 bp and 400 bp and two different PCR primer anchor points to mimic sequence read lengths commonly obtained using current high-throughput sequencing technologies. Accuracy was higher with 400-bp sequence reads than with 100-bp reads. It was also significantly affected by sequence location across the 1,400-bp test region. The highest accuracy was obtained across either the D1 or D2 variable region. The naïve Bayesian classifier provides an effective and rapid means to classify fungal LSU sequences from large environmental surveys. The training set and tool are publicly available through the Ribosomal Database Project.


Asunto(s)
Clasificación/métodos , Biología Computacional/métodos , Hongos/clasificación , Hongos/genética , Genes de ARNr/genética , ARN de Hongos/genética , ARN Ribosómico/genética , Sensibilidad y Especificidad , Factores de Tiempo
14.
Biotechnol Bioeng ; 109(5): 1140-5, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22125273

RESUMEN

Bacteria modulate glycoside hydrolase expression in response to the changes in the composition of lignocellulosic biomass. The response of switchgrass-adapted thermophilic bacterial consortia to perturbation with a variety of biomass substrates was characterized to determine if bacterial consortia also responded to changes in biomass composition. Incubation of the switchgrass-adapted consortia with these alternative substrates produced shifts in glycoside hydrolase activities and bacterial community composition. Substantially increased endoglucanase activity was observed upon incubation with microcrystalline cellulose and trifluororacetic acid-pretreated switchgrass. In contrast, culturing the microbial consortia with ionic liquid-pretreated switchgrass increased xylanase activity dramatically. Microbial community analyses of these cultures indicated that the increased endoglucanase activity correlated with an increase in bacteria related to Rhodothermus marinus. Inclusion of simple organic substrates in the culture medium abrogated glycoside hydrolase activity and enriched for bacteria related to Thermus thermophilus. These results demonstrate that the composition of biomass substrates influences the glycoside hydrolase activities and community composition of biomass-deconstructing bacterial consortia.


Asunto(s)
Bacterias/enzimología , Bacterias/crecimiento & desarrollo , Biota , Glicósido Hidrolasas/metabolismo , Panicum/microbiología , Bacterias/metabolismo , Biomasa , Celulosa/metabolismo
15.
Appl Environ Microbiol ; 77(2): 586-96, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21097594

RESUMEN

Members of the phylum Acidobacteria are among the most abundant bacteria in soil. Although they have been characterized as versatile heterotrophs, it is unclear if the types and availability of organic resources influence their distribution in soil. The potential for organic resources to select for different acidobacteria was assessed using molecular and cultivation-based approaches with agricultural and managed grassland soils in Michigan. The distribution of acidobacteria varied with the carbon content of soil: the proportion of subdivision 4 sequences was highest in agricultural soils (ca. 41%) that contained less carbon than grassland soils, where the proportions of subdivision 1, 3, 4, and 6 sequences were similar. Either readily oxidizable carbon or plant polymers were used as the sole carbon and energy source to isolate heterotrophic bacteria from these soils. Plant polymers increased the diversity of acidobacteria cultivated but decreased the total number of heterotrophs recovered compared to readily oxidizable carbon. Two phylogenetically novel Acidobacteria strains isolated on the plant polymer medium were characterized. Strains KBS 83 (subdivision 1) and KBS 96 (subdivision 3) are moderate acidophiles with pH optima of 5.0 and 6.0, respectively. Both strains grew slowly (µ = 0.01 h(-1)) and harbored either 1 (strain KBS 83) or 2 (strain KBS 96) copies of the 16S rRNA encoding gene-a genomic characteristic typical of oligotrophs. Strain KBS 83 is a microaerophile, growing optimally at 8% oxygen. These metabolic characteristics help delineate the niches that acidobacteria occupy in soil and are consistent with their widespread distribution and abundance.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Biodiversidad , Plantas/química , Polímeros/metabolismo , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Michigan , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
16.
mSystems ; 6(4): e0025021, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34227829

RESUMEN

High-affinity terminal oxidases (TOs) are believed to permit microbial respiration at low oxygen (O2) levels. Genes encoding such oxidases are widespread, and their existence in microbial genomes is taken as an indicator for microaerobic respiration. We combined respiratory kinetics determined via highly sensitive optical trace O2 sensors, genomics, and transcriptomics to test the hypothesis that high-affinity TOs are a prerequisite to respire micro- and nanooxic concentrations of O2 in environmentally relevant model soil organisms: acidobacteria. Members of the Acidobacteria harbor branched respiratory chains terminating in low-affinity (caa3-type cytochrome c oxidases) as well as high-affinity (cbb3-type cytochrome c oxidases and/or bd-type quinol oxidases) TOs, potentially enabling them to cope with varying O2 concentrations. The measured apparent Km (Km(app)) values for O2 of selected strains ranged from 37 to 288 nmol O2 liter-1, comparable to values previously assigned to low-affinity TOs. Surprisingly, we could not detect the expression of the conventional high-affinity TO (cbb3 type) at micro- and nanomolar O2 concentrations but detected the expression of low-affinity TOs. To the best of our knowledge, this is the first observation of microaerobic respiration imparted by low-affinity TOs at O2 concentrations as low as 1 nM. This challenges the standing hypothesis that a microaerobic lifestyle is exclusively imparted by the presence of high-affinity TOs. As low-affinity TOs are more efficient at generating ATP than high-affinity TOs, their utilization could provide a great benefit, even at low-nanomolar O2 levels. Our findings highlight energy conservation strategies that could promote the success of Acidobacteria in soil but might also be important for as-yet-unrevealed microorganisms. IMPORTANCE Low-oxygen habitats are widely distributed on Earth, ranging from the human intestine to soils. Microorganisms are assumed to have the capacity to respire low O2 concentrations via high-affinity terminal oxidases. By utilizing strains of a ubiquitous and abundant group of soil bacteria, the Acidobacteria, and combining respiration kinetics, genomics, and transcriptomics, we provide evidence that these microorganisms use the energetically more efficient low-affinity terminal oxidases to respire low-nanomolar O2 concentrations. This questions the standing hypothesis that the ability to respire traces of O2 stems solely from the activity of high-affinity terminal oxidases. We propose that this energetically efficient strategy extends into other, so-far-unrevealed microbial clades. Our findings also demonstrate that physiological predictions regarding the utilization of different O2 concentrations based solely on the presence or absence of terminal oxidases in bacterial genomes can be misleading.

17.
ISME J ; 15(2): 363-376, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33024291

RESUMEN

Significant rates of atmospheric dihydrogen (H2) consumption have been observed in temperate soils due to the activity of high-affinity enzymes, such as the group 1h [NiFe]-hydrogenase. We designed broadly inclusive primers targeting the large subunit gene (hhyL) of group 1h [NiFe]-hydrogenases for long-read sequencing to explore its taxonomic distribution across soils. This approach revealed a diverse collection of microorganisms harboring hhyL, including previously unknown groups and taxonomically not assignable sequences. Acidobacterial group 1h [NiFe]-hydrogenase genes were abundant and expressed in temperate soils. To support the participation of acidobacteria in H2 consumption, we studied two representative mesophilic soil acidobacteria, which expressed group 1h [NiFe]-hydrogenases and consumed atmospheric H2 during carbon starvation. This is the first time mesophilic acidobacteria, which are abundant in ubiquitous temperate soils, have been shown to oxidize H2 down to below atmospheric concentrations. As this physiology allows bacteria to survive periods of carbon starvation, it could explain the success of soil acidobacteria. With our long-read sequencing approach of group 1h [NiFe]-hydrogenase genes, we show that the ability to oxidize atmospheric levels of H2 is more widely distributed among soil bacteria than previously recognized and could represent a common mechanism enabling bacteria to persist during periods of carbon deprivation.


Asunto(s)
Acidobacteria , Hidrogenasas , Acidobacteria/metabolismo , Hidrógeno , Hidrogenasas/genética , Hidrogenasas/metabolismo , Oxidación-Reducción , Suelo , Microbiología del Suelo
18.
Microbiol Resour Announc ; 9(5)2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32001557

RESUMEN

We report eight genomes from representatives of the phylum Acidobacteria subdivisions 1 and 3, isolated from soils. The genome sizes range from 4.9 to 6.7 Mb. Genomic analysis reveals putative genes for low- and high-affinity respiratory oxygen reductases, high-affinity hydrogenases, and the capacity to use a diverse collection of carbohydrates.

19.
Front Microbiol ; 10: 168, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30863368

RESUMEN

Plant roots release recent photosynthates into the rhizosphere, accelerating decomposition of organic matter by saprotrophic soil microbes ("rhizosphere priming effect") which consequently increases nutrient availability for plants. However, about 90% of all higher plant species are mycorrhizal, transferring a significant fraction of their photosynthates directly to their fungal partners. Whether mycorrhizal fungi pass on plant-derived carbon (C) to bacteria in root-distant soil areas, i.e., incite a "hyphosphere priming effect," is not known. Experimental evidence for C transfer from mycorrhizal hyphae to soil bacteria is limited, especially for ectomycorrhizal systems. As ectomycorrhizal fungi possess enzymatic capabilities to degrade organic matter themselves, it remains unclear whether they cooperate with soil bacteria by providing photosynthates, or compete for available nutrients. To investigate a possible C transfer from ectomycorrhizal hyphae to soil bacteria, and its response to changing nutrient availability, we planted young beech trees (Fagus sylvatica) into "split-root" boxes, dividing their root systems into two disconnected soil compartments. Each of these compartments was separated from a litter compartment by a mesh penetrable for fungal hyphae, but not for roots. Plants were exposed to a 13C-CO2-labeled atmosphere, while 15N-labeled ammonium and amino acids were added to one side of the split-root system. We found a rapid transfer of recent photosynthates via ectomycorrhizal hyphae to bacteria in root-distant soil areas. Fungal and bacterial phospholipid fatty acid (PLFA) biomarkers were significantly enriched in hyphae-exclusive compartments 24 h after 13C-CO2-labeling. Isotope imaging with nanometer-scale secondary ion mass spectrometry (NanoSIMS) allowed for the first time in situ visualization of plant-derived C and N taken up by an extraradical fungal hypha, and in microbial cells thriving on hyphal surfaces. When N was added to the litter compartments, bacterial biomass, and the amount of incorporated 13C strongly declined. Interestingly, this effect was also observed in adjacent soil compartments where added N was only available for bacteria through hyphal transport, indicating that ectomycorrhizal fungi were acting on soil bacteria. Together, our results demonstrate that (i) ectomycorrhizal hyphae rapidly transfer plant-derived C to bacterial communities in root-distant areas, and (ii) this transfer promptly responds to changing soil nutrient conditions.

20.
Front Microbiol ; 9: 703, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29760683

RESUMEN

Diazotrophic microorganisms introduce biologically available nitrogen (N) to the global N cycle through the activity of the nitrogenase enzyme. The genetically conserved dinitrogenase reductase (nifH) gene is phylogenetically distributed across four clusters (I-IV) and is widely used as a marker gene for N2 fixation, permitting investigators to study the genetic diversity of diazotrophs in nature and target potential participants in N2 fixation. To date there have been limited, standardized pipelines for analyzing the nifH functional gene, which is in stark contrast to the 16S rRNA gene. Here we present a bioinformatics pipeline for processing nifH amplicon datasets - NifMAP ("NifH MiSeq Illumina Amplicon Analysis Pipeline"), which as a novel aspect uses Hidden-Markov Models to filter out homologous genes to nifH. By using this pipeline, we evaluated the broadly inclusive primer pairs (Ueda19F-R6, IGK3-DVV, and F2-R6) that target the nifH gene. To evaluate any systematic biases, the nifH gene was amplified with the aforementioned primer pairs in a diverse collection of environmental samples (soils, rhizosphere and roots samples, biological soil crusts and estuarine samples), in addition to a nifH mock community consisting of six phylogenetically diverse members. We noted that all primer pairs co-amplified nifH homologs to varying degrees; up to 90% of the amplicons were nifH homologs with IGK3-DVV in some samples (rhizosphere and roots from tall oat-grass). In regards to specificity, we observed some degree of bias across the primer pairs. For example, primer pair F2-R6 discriminated against cyanobacteria (amongst others), yet captured many sequences from subclusters IIIE and IIIL-N. These aforementioned subclusters were largely missing by the primer pair IGK3-DVV, which also tended to discriminate against Alphaproteobacteria, but amplified sequences within clusters IIIC (affiliated with Clostridia) and clusters IVB and IVC. Primer pair Ueda19F-R6 exhibited the least bias and successfully captured diazotrophs in cluster I and subclusters IIIE, IIIL, IIIM, and IIIN, but tended to discriminate against Firmicutes and subcluster IIIC. Taken together, our newly established bioinformatics pipeline, NifMAP, along with our systematic evaluations of nifH primer pairs permit more robust, high-throughput investigations of diazotrophs in diverse environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA