Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Mol Cell ; 73(1): 84-96.e7, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30472187

RESUMEN

The post-translational modification of key residues at the C-terminal domain of RNA polymerase II (RNAP2-CTD) coordinates transcription, splicing, and RNA processing by modulating its capacity to act as a landing platform for a variety of protein complexes. Here, we identify a new modification at the CTD, the deimination of arginine and its conversion to citrulline by peptidyl arginine deiminase 2 (PADI2), an enzyme that has been associated with several diseases, including cancer. We show that, among PADI family members, only PADI2 citrullinates R1810 (Cit1810) at repeat 31 of the CTD. Depletion of PADI2 or loss of R1810 results in accumulation of RNAP2 at transcription start sites, reduced gene expression, and inhibition of cell proliferation. Cit1810 is needed for interaction with the P-TEFb (positive transcription elongation factor b) kinase complex and for its recruitment to chromatin. In this way, CTD-Cit1810 favors RNAP2 pause release and efficient transcription in breast cancer cells.


Asunto(s)
Neoplasias de la Mama/enzimología , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/metabolismo , Transcripción Genética , Arginina , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular , Citrulinación , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Dominios Proteicos , Arginina Deiminasa Proteína-Tipo 2 , Desiminasas de la Arginina Proteica/genética , Desiminasas de la Arginina Proteica/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/genética , Transducción de Señal
2.
Mol Cell ; 69(1): 48-61.e6, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29304333

RESUMEN

The carboxy-terminal domain (CTD) of RNA polymerase (Pol) II is composed of a repetition of YSPTSPS heptads and functions as a loading platform for protein complexes that regulate transcription, splicing, and maturation of RNAs. Here, we studied mammalian CTD mutants to analyze the function of tyrosine1 residues in the transcription cycle. Mutation of 3/4 of the tyrosine residues (YFFF mutant) resulted in a massive read-through transcription phenotype in the antisense direction of promoters as well as in the 3' direction several hundred kilobases downstream of genes. The YFFF mutant shows reduced Pol II at promoter-proximal pause sites, a loss of interaction with the Mediator and Integrator complexes, and impaired recruitment of these complexes to chromatin. Consistent with these observations, Pol II loading at enhancers and maturation of snRNAs are altered in the YFFF context genome-wide. We conclude that tyrosine1 residues of the CTD control termination of transcription by Pol II.


Asunto(s)
ARN Polimerasa II/genética , ARN Mensajero/biosíntesis , Terminación de la Transcripción Genética/fisiología , Transcripción Genética/fisiología , Tirosina/genética , Línea Celular Tumoral , Cromatina/metabolismo , Humanos , Mutación/genética , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/metabolismo , ARN Nuclear Pequeño/genética
3.
EMBO Rep ; 24(9): e56150, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37424514

RESUMEN

The largest subunit of RNA polymerase (Pol) II harbors an evolutionarily conserved C-terminal domain (CTD), composed of heptapeptide repeats, central to the transcriptional process. Here, we analyze the transcriptional phenotypes of a CTD-Δ5 mutant that carries a large CTD truncation in human cells. Our data show that this mutant can transcribe genes in living cells but displays a pervasive phenotype with impaired termination, similar to but more severe than previously characterized mutations of CTD tyrosine residues. The CTD-Δ5 mutant does not interact with the Mediator and Integrator complexes involved in the activation of transcription and processing of RNAs. Examination of long-distance interactions and CTCF-binding patterns in CTD-Δ5 mutant cells reveals no changes in TAD domains or borders. Our data demonstrate that the CTD is largely dispensable for the act of transcription in living cells. We propose a model in which CTD-depleted Pol II has a lower entry rate onto DNA but becomes pervasive once engaged in transcription, resulting in a defect in termination.


Asunto(s)
ARN Polimerasa II , Transcripción Genética , Humanos , ARN Polimerasa II/metabolismo , Núcleo Celular/metabolismo , Mutación , Fosforilación
4.
Mol Cell ; 61(2): 305-14, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26799765

RESUMEN

The carboxy-terminal domain (CTD) of RNA polymerase II (Pol II) consists of heptad repeats with the consensus motif Y1-S2-P3-T4-S5-P6-S7. Dynamic phosphorylation of the CTD coordinates Pol II progression through the transcription cycle. Here, we use genetic and mass spectrometric approaches to directly detect and map phosphosites along the entire CTD. We confirm phosphorylation of CTD residues Y1, S2, T4, S5, and S7 in mammalian and yeast cells. Although specific phosphorylation signatures dominate, adjacent CTD repeats can be differently phosphorylated, leading to a high variation of coexisting phosphosites in mono- and di-heptad CTD repeats. Inhibition of CDK9 kinase specifically reduces S2 phosphorylation levels within the CTD.


Asunto(s)
ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/metabolismo , Humanos , Mamíferos , Espectrometría de Masas , Datos de Secuencia Molecular , Biblioteca de Péptidos , Fosforilación , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Secuencias Repetitivas de Aminoácido , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
5.
Nat Chem Biol ; 15(2): 123-131, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30598543

RESUMEN

Phosphorylation of the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) governs stage-specific interactions with different cellular machines. The CTD consists of Y1S2P3T4S5P6S7 heptad repeats and sequential phosphorylations of Ser7, Ser5 and Ser2 occur universally at Pol II-transcribed genes. Phosphorylation of Thr4, however, appears to selectively modulate transcription of specific classes of genes. Here, we identify ten new Thr4 kinases from different kinase structural groups. Irreversible chemical inhibition of the most active Thr4 kinase, Hrr25, reveals a novel role for this kinase in transcription termination of specific class of noncoding snoRNA genes. Genome-wide profiles of Hrr25 reveal a selective enrichment at 3' regions of noncoding genes that display termination defects. Importantly, phospho-Thr4 marks placed by Hrr25 are recognized by Rtt103, a key component of the termination machinery. Our results suggest that these uncommon CTD kinases place phospho-Thr4 marks to regulate expression of targeted genes.


Asunto(s)
Proteínas Quinasas/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/fisiología , Secuencia de Aminoácidos , Quinasa de la Caseína I/metabolismo , Fosforilación , Filogenia , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Treonina/metabolismo , Transcripción Genética
6.
Nucleic Acids Res ; 47(2): 700-715, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30476274

RESUMEN

Mammalian-wide interspersed repeats (MIRs) are retrotransposed elements of mammalian genomes. Here, we report the specific binding of zinc finger protein ZNF768 to the sequence motif GCTGTGTG (N20) CCTCTCTG in the core region of MIRs. ZNF768 binding is preferentially associated with euchromatin and promoter regions of genes. Binding was observed for genes expressed in a cell type-specific manner in human B cell line Raji and osteosarcoma U2OS cells. Mass spectrometric analysis revealed binding of ZNF768 to Elongator components Elp1, Elp2 and Elp3 and other nuclear factors. The N-terminus of ZNF768 contains a heptad repeat array structurally related to the C-terminal domain (CTD) of RNA polymerase II. This array evolved in placental animals but not marsupials and monotreme species, displays species-specific length variations, and possibly fulfills CTD related functions in gene regulation. We propose that the evolution of MIRs and ZNF768 has extended the repertoire of gene regulatory mechanisms in mammals and that ZNF768 binding is associated with cell type-specific gene expression.


Asunto(s)
Retroelementos , Factores de Transcripción/metabolismo , Transcripción Genética , Sitios de Unión , Línea Celular Tumoral , Supervivencia Celular , ADN/química , ADN/metabolismo , Eucromatina/metabolismo , Regulación de la Expresión Génica , Humanos , Motivos de Nucleótidos , Secuencias Repetitivas de Ácidos Nucleicos , Factores de Transcripción/química
7.
Genes Dev ; 27(7): 767-77, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23592796

RESUMEN

Transcription steps are marked by different modifications of the C-terminal domain of RNA polymerase II (RNAPII). Phosphorylation of Ser5 and Ser7 by cyclin-dependent kinase 7 (CDK7) as part of TFIIH marks initiation, whereas phosphorylation of Ser2 by CDK9 marks elongation. These processes are thought to take place in localized transcription foci in the nucleus, known as "transcription factories," but it has been argued that the observed clusters/foci are mere fixation or labeling artifacts. We show that transcription factories exist in living cells as distinct foci by live-imaging fluorescently labeled CDK9, a kinase known to associate with active RNAPII. These foci were observed in different cell types derived from CDK9-mCherry knock-in mice. We show that these foci are very stable while highly dynamic in exchanging CDK9. Chromatin immunoprecipitation (ChIP) coupled with deep sequencing (ChIP-seq) data show that the genome-wide binding sites of CDK9 and initiating RNAPII overlap on transcribed genes. Immunostaining shows that CDK9-mCherry foci colocalize with RNAPII-Ser5P, much less with RNAPII-Ser2P, and not with CDK12 (a kinase reported to be involved in the Ser2 phosphorylation) or with splicing factor SC35. In conclusion, transcription factories exist in living cells, and initiation and elongation of transcripts takes place in different nuclear compartments.


Asunto(s)
ARN Polimerasa II/metabolismo , Imagen de Lapso de Tiempo , Transcripción Genética , Animales , Células Cultivadas , Quinasa 9 Dependiente de la Ciclina/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/enzimología , Proteínas Luminiscentes/metabolismo , Ratones , Microscopía Fluorescente , Estructura Terciaria de Proteína , Transporte de Proteínas , ARN Polimerasa II/química , Proteína Fluorescente Roja
8.
Trends Biochem Sci ; 41(11): 894-897, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27283512

RESUMEN

Low-complexity (LC) domains regulate the aggregation and phase transition of proteins in a modification-dependent manner. The study of LC domain modifications has now become feasible, as shown by genetic variants of the carboxy-terminal domain (CTD) of RNA Polymerase II (Pol II) that provide access to the type and position of modifications of a LC domain by mass spectrometry (MS).


Asunto(s)
Sustitución de Aminoácidos , Proteínas de Unión a Calmodulina/química , ARN Polimerasa II/química , Proteína FUS de Unión a ARN/química , Proteínas de Unión al ARN/química , Factores Asociados con la Proteína de Unión a TATA/química , Secuencia de Aminoácidos , Animales , Proteínas de Unión a Calmodulina/genética , Pollos , Expresión Génica , Humanos , Ratones , Mutación , Dominios Proteicos , ARN Polimerasa II/genética , Proteína EWS de Unión a ARN , Proteína FUS de Unión a ARN/genética , Proteínas de Unión al ARN/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Factores Asociados con la Proteína de Unión a TATA/genética , Transcripción Genética
9.
Proc Natl Acad Sci U S A ; 114(20): E3944-E3953, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28465432

RESUMEN

The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) orchestrates dynamic recruitment of specific cellular machines during different stages of transcription. Signature phosphorylation patterns of Y1S2P3T4S5P6S7 heptapeptide repeats of the CTD engage specific "readers." Whereas phospho-Ser5 and phospho-Ser2 marks are ubiquitous, phospho-Thr4 is reported to only impact specific genes. Here, we identify a role for phospho-Thr4 in transcription termination at noncoding small nucleolar RNA (snoRNA) genes. Quantitative proteomics reveals an interactome of known readers as well as protein complexes that were not known to rely on Thr4 for association with Pol II. The data indicate a key role for Thr4 in engaging the machinery used for transcription elongation and termination. We focus on Rtt103, a protein that binds phospho-Ser2 and phospho-Thr4 marks and facilitates transcription termination at protein-coding genes. To elucidate how Rtt103 engages two distinct CTD modifications that are differentially enriched at noncoding genes, we relied on NMR analysis of Rtt103 in complex with phospho-Thr4- or phospho-Ser2-bearing CTD peptides. The structural data reveal that Rtt103 interacts with phospho-Thr4 in a manner analogous to its interaction with phospho-Ser2-modified CTD. The same set of hydrogen bonds involving either the oxygen on phospho-Thr4 and the hydroxyl on Ser2, or the phosphate on Ser2 and the Thr4 hydroxyl, can be formed by rotation of an arginine side chain, leaving the intermolecular interface otherwise unperturbed. This economy of design enables Rtt103 to engage Pol II at distinct sets of genes with differentially enriched CTD marks.


Asunto(s)
ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Factores de Terminación de Péptidos/metabolismo , Fosforilación , Dominios Proteicos/fisiología , Isoformas de Proteínas/metabolismo , ARN Polimerasa II/fisiología , ARN Nucleolar Pequeño/metabolismo , ARN Pequeño no Traducido/metabolismo , ARN no Traducido/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Serina/metabolismo , Treonina/metabolismo , Factores de Transcripción/fisiología , Transcripción Genética/genética
10.
Biol Lett ; 15(5): 20190068, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31088280

RESUMEN

The carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) consists of 26 and 52 heptad-repeats in yeast and mammals, respectively. Studies in yeast showed that the strong periodicity of the YSPTSPS heptads is dispensable for cell growth and that di-heptads interspersed by spacers can act as minimal functional units (MFUs) to fulfil all essential CTD functions. Here, we show that the MFU of mammalian cells is significantly larger than in yeast and consists of penta-heptads. We further show that the distance between two MFUs is critical for the functions of mammalian CTD. Our study suggests that the general structure of the CTD remained largely unchanged in yeast and mammals; however, besides the number of heptad-repeats, also the length of the MFU significantly increased in mammals.


Asunto(s)
ARN Polimerasa II , Saccharomyces cerevisiae , Animales , Mamíferos
11.
J Immunol ; 194(7): 3432-43, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25732733

RESUMEN

V(D)J recombination assembles Ag receptor genes during lymphocyte development. Enhancers at AR loci are known to control V(D)J recombination at associated alleles, in part by increasing chromatin accessibility of the locus, to allow the recombination machinery to gain access to its chromosomal substrates. However, whether there is a specific mechanism to induce chromatin accessibility at AR loci is still unclear. In this article, we highlight a specialized epigenetic marking characterized by high and extended H3K4me3 levels throughout the Dß-Jß-Cß gene segments. We show that extended H3K4 trimethylation at the Tcrb locus depends on RNA polymerase II (Pol II)-mediated transcription. Furthermore, we found that the genomic regions encompassing the two DJCß clusters are highly enriched for Ser(5)-phosphorylated Pol II and short-RNA transcripts, two hallmarks of transcription initiation and early transcription. Of interest, these features are shared with few other tissue-specific genes. We propose that the entire DJCß regions behave as transcription "initiation" platforms, therefore linking a specialized mechanism of Pol II transcription with extended H3K4 trimethylation and highly accessible Dß and Jß gene segments.


Asunto(s)
Cromatina/genética , Sitios Genéticos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Transcripción Genética , Animales , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Inmunoprecipitación de Cromatina , Metilación de ADN , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , ARN Polimerasa II/metabolismo , Recombinación V(D)J
12.
Mol Cell ; 34(3): 387-93, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19450536

RESUMEN

Posttranslational modifications of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) specify a molecular recognition code that is deciphered by proteins involved in RNA biogenesis. The CTD is comprised of a repeating heptapeptide (Y(1)S(2)P(3)T(4)S(5)P(6)S(7)). Recently, phosphorylation of serine 7 was shown to be important for cotranscriptional processing of two snRNAs in mammalian cells. Here we report that Kin28/Cdk7, a subunit of the evolutionarily conserved TFIIH complex, is a Ser7 kinase. The ability of Kin28/Cdk7 to phosphorylate Ser7 is particularly surprising because this kinase functions at promoters of protein-coding genes, rather than being restricted to promoter-distal regions of snRNA genes. Kin28/Cdk7 is also known to phosphorylate Ser5 residues of the CTD at gene promoters. Taken together, our results implicate the TFIIH kinase in placing bivalent Ser5 and Ser7 marks early in gene transcription. These bivalent CTD marks, in concert with cues within nascent transcripts, specify the cotranscriptional engagement of the relevant RNA processing machinery.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Subunidades de Proteína/metabolismo , ARN Polimerasa II/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Quinasas Ciclina-Dependientes/genética , Humanos , Fosforilación , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , ARN Polimerasa II/química , ARN Polimerasa II/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
13.
EMBO J ; 31(4): 986-99, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22157820

RESUMEN

The key haematopoietic regulator Myb is essential for coordinating proliferation and differentiation. ChIP-Sequencing and Chromosome Conformation Capture (3C)-Sequencing were used to characterize the structural and protein-binding dynamics of the Myb locus during erythroid differentiation. In proliferating cells expressing Myb, enhancers within the Myb-Hbs1l intergenic region were shown to form an active chromatin hub (ACH) containing the Myb promoter and first intron. This first intron was found to harbour the transition site from transcription initiation to elongation, which takes place around a conserved CTCF site. Upon erythroid differentiation, Myb expression is downregulated and the ACH destabilized. We propose a model for Myb activation by distal enhancers dynamically bound by KLF1 and the GATA1/TAL1/LDB1 complex, which primarily function as a transcription elongation element through chromatin looping.


Asunto(s)
Cromatina/metabolismo , Eritrocitos/metabolismo , Proteínas Proto-Oncogénicas c-myb/genética , Transcripción Genética , Inmunoprecipitación de Cromatina , Humanos , Proto-Oncogenes Mas
14.
EMBO J ; 31(12): 2784-97, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22549466

RESUMEN

Eukaryotic RNA polymerase II (Pol II) has evolved an array of heptad repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the carboxy-terminal domain (CTD) of the large subunit (Rpb1). Differential phosphorylation of Ser2, Ser5, and Ser7 in the 5' and 3' regions of genes coordinates the binding of transcription and RNA processing factors to the initiating and elongating polymerase complexes. Here, we report phosphorylation of Thr4 by Polo-like kinase 3 in mammalian cells. ChIPseq analyses indicate an increase of Thr4-P levels in the 3' region of genes occurring subsequently to an increase of Ser2-P levels. A Thr4/Ala mutant of Pol II displays a lethal phenotype. This mutant reveals a global defect in RNA elongation, while initiation is largely unaffected. Since Thr4 replacement mutants are viable in yeast we conclude that this amino acid has evolved an essential function(s) in the CTD of Pol II for gene transcription in mammalian cells.


Asunto(s)
Regulación de la Expresión Génica , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Polimerasa II/metabolismo , Treonina/metabolismo , Transcripción Genética , Sustitución de Aminoácidos , Animales , Línea Celular , Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , Genes Esenciales , Humanos , Mutagénesis Sitio-Dirigida , Fosforilación , ARN Polimerasa II/genética , Proteínas Supresoras de Tumor
15.
Exp Cell Res ; 334(1): 146-59, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25825154

RESUMEN

PeBoW, a trimeric complex consisting of pescadillo (Pes1), block of proliferation (Bop1), and the WD repeat protein 12 (WDR12), is essential for processing and maturation of mammalian 5.8S and 28S ribosomal RNAs. Applying a mass spectrometric analysis, we identified the DEAD-box helicase DDX27 as stably associated factor of the PeBoW-complex. DDX27 interacts with the PeBoW-complex via an evolutionary conserved F×F motif in the N-terminal domain and is recruited to the nucleolus via its basic C-terminal domain. This recruitment is RNA-dependent and occurs independently of the PeBoW-complex. Interestingly, knockdown of DDX27, but not of Pes1, induces the accumulation of an extended form of the primary 47S rRNA. We conclude that DDX27 can interact specifically with the Pes1 and Bop1 but fulfils critical function(s) for proper 3' end formation of 47S rRNA independently of the PeBoW-complex.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , ARN Ribosómico/metabolismo , Proteínas de Ciclo Celular , Humanos , Complejos Multiproteicos/metabolismo , Proteínas de Unión al ARN , Células Tumorales Cultivadas
16.
Eukaryot Cell ; 14(1): 86-95, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25416238

RESUMEN

Translation is a fundamental and highly regulated cellular process. Previously, we reported that the kinase and transcription elongation factor Ctk1 increases fidelity during translation elongation in Saccharomyces cerevisiae. Here, we show that loss of Ctk1 function also affects the initiation step of translation. Translation active extracts from Ctk1-depleted cells show impaired translation activity of capped mRNA, but not mRNA reporters containing the cricket paralysis virus (CrPV) internal ribosome entry site (IRES). Furthermore, the formation of 80S initiation complexes is decreased, which is probably due to reduced subunit joining. In addition, we determined the changes in the phosphorylation pattern of a ribosome enriched fraction after depletion of Ctk1. Thus, we provide a catalogue of phosphoproteomic changes dependent on Ctk1. Taken together, our data suggest a stimulatory function of Ctk1 in 80S formation during translation initiation.


Asunto(s)
Iniciación de la Cadena Peptídica Traduccional , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Subunidades Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Genome Res ; 22(10): 2031-42, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22539649

RESUMEN

RNA synthesis and decay rates determine the steady-state levels of cellular RNAs. Metabolic tagging of newly transcribed RNA by 4-thiouridine (4sU) can reveal the relative contributions of RNA synthesis and decay rates. The kinetics of RNA processing, however, had so far remained unresolved. Here, we show that ultrashort 4sU-tagging not only provides snapshot pictures of eukaryotic gene expression but, when combined with progressive 4sU-tagging and RNA-seq, reveals global RNA processing kinetics at nucleotide resolution. Using this method, we identified classes of rapidly and slowly spliced/degraded introns. Interestingly, each class of splicing kinetics was characterized by a distinct association with intron length, gene length, and splice site strength. For a large group of introns, we also observed long lasting retention in the primary transcript, but efficient secondary splicing or degradation at later time points. Finally, we show that processing of most, but not all small nucleolar (sno)RNA-containing introns is remarkably inefficient with the majority of introns being spliced and degraded rather than processed into mature snoRNAs. In summary, our study yields unparalleled insights into the kinetics of RNA processing and provides the tools to study molecular mechanisms of RNA processing and their contribution to the regulation of gene expression.


Asunto(s)
Empalme del ARN , ARN/genética , ARN/metabolismo , Empalme Alternativo , Linfocitos B/metabolismo , Línea Celular , Exones , Humanos , Intrones , Cinética , ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , Sitios de Empalme de ARN , Estabilidad del ARN , Tiouridina/química , Transcripción Genética
18.
Nucleic Acids Res ; 41(3): 1591-603, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23275552

RESUMEN

Co-transcriptional pre-mRNA processing relies on reversible phosphorylation of the carboxyl-terminal domain (CTD) of Rpb1, the largest subunit of RNA polymerase II (RNAP II). In this study, we replaced in live cells the endogenous Rpb1 by S2A Rpb1, where the second serines (Ser2) in the CTD heptapeptide repeats were switched to alanines, to prevent phosphorylation. Although slower, S2A RNAP II was able to transcribe. However, it failed to recruit splicing components such as U2AF65 and U2 snRNA to transcription sites, although the recruitment of U1 snRNA was not affected. As a consequence, co-transcriptional splicing was impaired. Interestingly, the magnitude of the S2A RNAP II splicing defect was promoter dependent. In addition, S2A RNAP II showed an impaired recruitment of the cleavage factor PCF11 to pre-mRNA and a defect in 3'-end RNA cleavage. These results suggest that CTD Ser2 plays critical roles in co-transcriptional pre-mRNA maturation in vivo: It likely recruits U2AF65 to ensure an efficient co-transcriptional splicing and facilitates the recruitment of pre-mRNA 3'-end processing factors to enhance 3'-end cleavage.


Asunto(s)
Procesamiento de Término de ARN 3' , ARN Polimerasa II/química , Empalme del ARN , Serina/fisiología , Alanina , Sustitución de Aminoácidos , Línea Celular , Humanos , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , División del ARN , ARN Polimerasa II/metabolismo , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteínas/metabolismo , Factor de Empalme U2AF , Transcripción Genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
19.
J Biol Chem ; 288(29): 21173-21183, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23744076

RESUMEN

Ribosome biogenesis is a process required for cellular growth and proliferation. Processing of ribosomal RNA (rRNA) is highly sensitive to flavopiridol, a specific inhibitor of cyclin-dependent kinase 9 (Cdk9). Cdk9 has been characterized as the catalytic subunit of the positive transcription elongation factor b (P-TEFb) of RNA polymerase II (RNAPII). Here we studied the connection between RNAPII transcription and rRNA processing. We show that inhibition of RNAPII activity by α-amanitin specifically blocks processing of rRNA. The block is characterized by accumulation of 3' extended unprocessed 47 S rRNAs and the entire inhibition of other 47 S rRNA-specific processing steps. The transcription rate of rRNA is moderately reduced after inhibition of Cdk9, suggesting that defective 3' processing of rRNA negatively feeds back on RNAPI transcription. Knockdown of Cdk9 caused a strong reduction of the levels of RNAPII-transcribed U8 small nucleolar RNA, which is essential for 3' rRNA processing in mammalian cells. Our data demonstrate a pivotal role of Cdk9 activity for coupling of RNAPII transcription with small nucleolar RNA production and rRNA processing.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , ARN Polimerasa II/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/genética , Transcripción Genética , Animales , Línea Celular Tumoral , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/enzimología , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , ARN Helicasas DEAD-box/metabolismo , Retroalimentación Fisiológica/efectos de los fármacos , Flavonoides/farmacología , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Noqueados , Piperidinas/farmacología , Procesamiento de Término de ARN 3'/efectos de los fármacos , Procesamiento de Término de ARN 3'/genética , ARN Polimerasa II/antagonistas & inhibidores , Procesamiento Postranscripcional del ARN/efectos de los fármacos , ARN Nucleolar Pequeño/metabolismo , Ribonucleasa III/metabolismo , Transcripción Genética/efectos de los fármacos
20.
Biochim Biophys Acta ; 1829(1): 55-62, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22982363

RESUMEN

The eukaryotic RNA polymerase II (RNAPII) catalyzes the transcription of all protein encoding genes and is also responsible for the generation of small regulatory RNAs. RNAPII has evolved a unique domain composed of heptapeptide repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the C-terminus (CTD) of its largest subunit (Rpb1). Dynamic phosphorylation patterns of serine residues in CTD during gene transcription coordinate the recruitment of factors to the elongating RNAPII and to the nascent transcript. Recent studies identified threonine 4 and tyrosine 1 as new CTD modifications and thereby expanded the "CTD code". In this review, we focus on CTD phosphorylation and its function in the RNAPII transcription cycle. We also discuss in detail the limitations of the phosphospecific CTD antibodies, which are used in all studies. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.


Asunto(s)
Proteínas Quinasas/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Transcripción Genética/fisiología , Secuencia de Aminoácidos , Animales , Humanos , Cinética , Modelos Biológicos , Fosforilación , Estructura Terciaria de Proteína/genética , ARN Polimerasa II/fisiología , Serina/química , Serina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA