Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Tissue Cell ; 46(4): 260-3, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24981719

RESUMEN

The neuroanatomy of the olfactory pathway has been intensely studied in many representatives of Malacostraca. Nevertheless, the knowledge about bilateral olfactory integration pathways is mainly based on Decapoda. Here, we investigated the olfactory projection neuron pathway of two marine isopod species, Saduria entomon and Idotea emarginata, by lipophilic dye injections into the olfactory neuropil. We show that both arms of the olfactory globular tract form a chiasm in the center of the brain, as known from several other crustaceans. Furthermore, the olfactory projection neurons innervate both the medulla terminalis and the hemiellipsoid body of the ipsi- and the contralateral hemisphere. Both protocerebral neuropils are innervated to a comparable extent. This is reminiscent of the situation in the basal decapod taxon Dendrobranchiata. Thus, we propose that an innervation by the olfactory globular tract of both the medulla terminalis and the hemiellipsoid body is characteristic of the decapod ground pattern, but also of the ground pattern of Caridoida.


Asunto(s)
Organismos Acuáticos/ultraestructura , Ganglios de Invertebrados/ultraestructura , Neuronas/ultraestructura , Vías Olfatorias/ultraestructura , Animales , Encéfalo/ultraestructura , Isópodos/ultraestructura
2.
J Comp Neurol ; 520(9): 2021-40, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22173776

RESUMEN

We examined the development of olfactory neuropils in the hemimetabolous insect Locusta migratoria with an emphasis on the mushroom bodies, protocerebral integration centers implicated in memory formation. Using a marker of the cyclic adenosine monophosphate (cAMP) signaling cascade and lipophilic dye labeling, we obtained new insights into mushroom body organization by resolving previously unrecognized accessory lobelets arising from Class III Kenyon cells. We utilized antibodies against axonal guidance cues, such as the cell surface glycoproteins Semaphorin 1a (Sema 1a) and Fasciclin I (Fas I), as embryonic markers to compile a comprehensive atlas of mushroom body development. During embryogenesis, all neuropils of the olfactory pathway transiently expressed Sema 1a. The immunoreactivity was particularly strong in developing mushroom bodies. During late embryonic stages, Sema 1a expression in the mushroom bodies became restricted to a subset of Kenyon cells in the core region of the peduncle. Sema 1a was differentially sorted to the Kenyon cell axons and absent in the dendrites. In contrast to Drosophila, locust mushroom bodies and antennal lobes expressed Fas I, but not Fas II. While Fas I immunoreactivity was widely distributed in the midbrain during embryogenesis, labeling persisted into adulthood only in the mushroom bodies and antennal lobes. Kenyon cells proliferated throughout the larval stages. Their neurites retained the embryonic expression pattern of Sema 1a and Fas I, suggesting a role for these molecules in developmental mushroom body plasticity. Our study serves as an initial step toward functional analyses of Sema 1a and Fas I expression during locust mushroom body formation.


Asunto(s)
Antenas de Artrópodos/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Locusta migratoria/anatomía & histología , Locusta migratoria/crecimiento & desarrollo , Cuerpos Pedunculados/metabolismo , Aminoácidos/metabolismo , Animales , Antenas de Artrópodos/crecimiento & desarrollo , Caseína Cinasa 1 épsilon/metabolismo , Moléculas de Adhesión Celular Neuronal/clasificación , AMP Cíclico/metabolismo , Drosophila/anatomía & histología , Drosophila/metabolismo , Embrión no Mamífero , Histonas/metabolismo , Cuerpos Pedunculados/crecimiento & desarrollo , Neuronas , Neurópilo , Vías Olfatorias/embriología , Vías Olfatorias/crecimiento & desarrollo , Vías Olfatorias/metabolismo , Faloidina/metabolismo , Compuestos de Amonio Cuaternario/metabolismo
3.
J Comp Neurol ; 520(4): 679-93, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21935945

RESUMEN

The insect olfactory system consists of thousands of sensory neurons on each antenna, which project into the primary olfactory center, the glomerular antennnal lobe. There, they form synapses with local interneurons and projection neurons, which relay olfactory information to the second-order olfactory center, the mushroom body. Olfactory afferents of adult locusts (Locusta migratoria) were axotomized by crushing the base of the antenna. We studied the resulting degeneration and regeneration in the antennal lobe by size measurements, anterograde dye labeling through the antennal nerve, and immunofluorescence staining of cell surface markers. Within 3 days postcrush, the antennal lobe size was reduced by 30% and from then onward regained size back to normal by 2 weeks postinjury. Concomitantly, anterograde labeling revealed regenerating afferents reaching the antennal lobe by day 4 postcrush, and reinnervating the olfactory neuropil almost back to normal within 2 weeks. Regenerated fibers were directed precisely into the antennal lobe, where they reinnervated glomeruli. As a remarkable exception, a few regenerating fibers projected erroneously into the mushroom body on a pathway that is normally chosen by second-order projection neurons. Regenerating afferents expressed the cell surface proteins lachesin and fasciclin I. The antennal lobe neuropil expressed the cell surface marker semaphorin 1a. In conclusion, axonal regeneration in the locust olfactory system appears to be possible, precise, and fast, opening the possibility of future functional and mechanistic studies.


Asunto(s)
Axones/fisiología , Encéfalo/crecimiento & desarrollo , Saltamontes/fisiología , Regeneración Nerviosa/fisiología , Neuronas Aferentes/fisiología , Vías Olfatorias/crecimiento & desarrollo , Células Receptoras Sensoriales/fisiología , Animales , Antenas de Artrópodos/citología , Antenas de Artrópodos/crecimiento & desarrollo , Axotomía , Encéfalo/citología , Tamaño de la Célula , Femenino , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador , Masculino , Proteínas de la Membrana/metabolismo , Compresión Nerviosa , Vías Olfatorias/citología , Recuperación de la Función/fisiología , Fijación del Tejido
4.
PLoS One ; 7(7): e41236, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22829931

RESUMEN

BACKGROUND: Optical Projection Tomography (OPT) is a microscopic technique that generates three dimensional images from whole mount samples the size of which exceeds the maximum focal depth of confocal laser scanning microscopes. As an advancement of conventional emission-OPT, Scanning Laser Optical Tomography (SLOTy) allows simultaneous detection of fluorescence and absorbance with high sensitivity. In the present study, we employ SLOTy in a paradigm of brain plasticity in an insect model system. METHODOLOGY: We visualize and quantify volumetric changes in sensory information procession centers in the adult locust, Locusta migratoria. Olfactory receptor neurons, which project from the antenna into the brain, are axotomized by crushing the antennal nerve or ablating the entire antenna. We follow the resulting degeneration and regeneration in the olfactory centers (antennal lobes and mushroom bodies) by measuring their size in reconstructed SLOTy images with respect to the untreated control side. Within three weeks post treatment antennal lobes with ablated antennae lose as much as 60% of their initial volume. In contrast, antennal lobes with crushed antennal nerves initially shrink as well, but regain size back to normal within three weeks. The combined application of transmission-and fluorescence projections of Neurobiotin labeled axotomized fibers confirms that recovery of normal size is restored by regenerated afferents. Remarkably, SLOTy images reveal that degeneration of olfactory receptor axons has a trans-synaptic effect on second order brain centers and leads to size reduction of the mushroom body calyx. CONCLUSIONS: This study demonstrates that SLOTy is a suitable method for rapid screening of volumetric plasticity in insect brains and suggests its application also to vertebrate preparations.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Locusta migratoria/anatomía & histología , Locusta migratoria/fisiología , Tomografía de Coherencia Óptica/métodos , Animales
5.
J Comp Neurol ; 518(8): 1157-75, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20148434

RESUMEN

We followed the development of the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) system during locust embryogenesis in whole mount nervous systems and brain sections by using various cytochemical techniques. We visualized NO-sensitive neurons by cGMP immunofluorescence after incubation with an NO donor in the presence of the soluble guanylyl cyclase (sGC) activator YC-1 and the phosphodiesterase-inhibitor isobutyl-methyl-xanthine (IBMX). Central nervous system (CNS) cells respond to NO as early as 38% embryogenesis. By using the NADPH-diaphorase technique, we identified somata and neurites of possible NO-synthesizing cells in the CNS. The first NADPH-diaphorase-positive cell bodies appear around 40% embryogenesis in the brain and at 47% in the ventral nerve cord. The number of positive cells reaches the full complement of adult cells at 80%. In the brain, some structures, e.g., the mushroom bodies acquire NADPH-diaphorase staining only postembryonically. Immunolocalization of L-citrulline confirmed the presence of NOS in NADPH-diaphorase-stained neurons and, in addition, indicated enzymatic activity in vivo. In whole mount ventral nerve cords, citrulline immunolabeling was present in varying subsets of NADPH-diaphorase-positive cells, but staining was very variable and often weak. However, in a regeneration paradigm in which one of the two connectives between ganglia had been crushed, strong, reliable staining was observed as early as 60% embryogenesis. Thus, citrulline immunolabeling appears to reflect specific activity of NOS. However, in younger embryos, NOS may not always be constitutively active or may be so at a very low level, below the citrulline antibody detection threshold. For the CNS, histochemical markers for NOS do not provide conclusive evidence for a developmental role of this enzyme.


Asunto(s)
Locusta migratoria/embriología , Neuronas/fisiología , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico/metabolismo , 1-Metil-3-Isobutilxantina/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Citrulina/metabolismo , GMP Cíclico/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Activadores de Enzimas/farmacología , Ganglios de Invertebrados/efectos de los fármacos , Ganglios de Invertebrados/embriología , Ganglios de Invertebrados/metabolismo , Indazoles/farmacología , Locusta migratoria/efectos de los fármacos , NADPH Deshidrogenasa/metabolismo , Regeneración Nerviosa , Sistema Nervioso/embriología , Neuritas/efectos de los fármacos , Neuritas/fisiología , Neuronas/efectos de los fármacos , Neurópilo/efectos de los fármacos , Neurópilo/fisiología , Inhibidores de Fosfodiesterasa/farmacología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA