RESUMEN
Oncoproteins of the MYC family are major drivers of human tumorigenesis. Since a large body of evidence indicates that MYC proteins are transcription factors, studying their function has focused on the biology of their target genes. Detailed studies of MYC-dependent changes in RNA levels have provided contrasting models of the oncogenic activity of MYC proteins through either enhancing or repressing the expression of specific target genes, or as global amplifiers of transcription. In this Review, we first summarize the biochemistry of MYC proteins and what is known (or is unclear) about the MYC target genes. We then discuss recent progress in defining the interactomes of MYC and MYCN and how this information affects central concepts of MYC biology, focusing on mechanisms by which MYC proteins modulate transcription. MYC proteins promote transcription termination upon stalling of RNA polymerase II, and we propose that this mechanism enhances the stress resilience of basal transcription. Furthermore, MYC proteins coordinate transcription elongation with DNA replication and cell cycle progression. Finally, we argue that the mechanism by which MYC proteins regulate the transcription machinery is likely to promote tumorigenesis independently of global or relative changes in the expression of their target genes.
Asunto(s)
Proteína Proto-Oncogénica N-Myc/genética , Neoplasias/genética , Proteínas Proto-Oncogénicas c-myc/genética , Transcripción Genética , Carcinogénesis/genética , Ciclo Celular/genética , Proliferación Celular/genética , Replicación del ADN/genética , Humanos , Proteínas Oncogénicas/genética , Factores de TranscripciónRESUMEN
The MYCN oncoprotein binds active promoters in a heterodimer with its partner protein MAX. MYCN also interacts with the nuclear exosome, a 3'-5' exoribonuclease complex, suggesting a function in RNA metabolism. Here, we show that MYCN forms stable high-molecular-weight complexes with the exosome and multiple RNA-binding proteins. MYCN binds RNA in vitro and in cells via a conserved sequence termed MYCBoxI. In cells, MYCN associates with thousands of intronic transcripts together with the ZCCHC8 subunit of the nuclear exosome targeting complex and enhances their processing. Perturbing exosome function results in global re-localization of MYCN from promoters to intronic RNAs. On chromatin, MYCN is then replaced by the MNT(MXD6) repressor protein, inhibiting MYCN-dependent transcription. RNA-binding-deficient alleles show that RNA-binding limits MYCN's ability to activate cell growth-related genes but is required for MYCN's ability to promote progression through S phase and enhance the stress resilience of neuroblastoma cells.
Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma , Proteína Proto-Oncogénica N-Myc , Proteínas Nucleares , Proteínas Oncogénicas , Proteínas de Unión al ARN , Humanos , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Exosomas/metabolismo , Exosomas/genética , Regulación Neoplásica de la Expresión Génica , Intrones , Proteína Proto-Oncogénica N-Myc/metabolismo , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/patología , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Oncogénicas/metabolismo , Proteínas Oncogénicas/genética , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , ARN/metabolismo , ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genéticaRESUMEN
Long noncoding (lnc)RNAs emerge as regulators of genome stability. The nuclear-enriched abundant transcript 1 (NEAT1) is overexpressed in many tumors and is responsive to genotoxic stress. However, the mechanism that links NEAT1 to DNA damage response (DDR) is unclear. Here, we investigate the expression, modification, localization, and structure of NEAT1 in response to DNA double-strand breaks (DSBs). DNA damage increases the levels and N6-methyladenosine (m6A) marks on NEAT1, which promotes alterations in NEAT1 structure, accumulation of hypermethylated NEAT1 at promoter-associated DSBs, and DSB signaling. The depletion of NEAT1 impairs DSB focus formation and elevates DNA damage. The genome-protective role of NEAT1 is mediated by the RNA methyltransferase 3 (METTL3) and involves the release of the chromodomain helicase DNA binding protein 4 (CHD4) from NEAT1 to fine-tune histone acetylation at DSBs. Our data suggest a direct role for NEAT1 in DDR.
Asunto(s)
Adenosina , Roturas del ADN de Doble Cadena , Inestabilidad Genómica , Metiltransferasas , ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Inestabilidad Genómica/genética , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/genética , Metilación , Daño del ADN/genética , ADN Helicasas/metabolismo , ADN Helicasas/genética , Histonas/metabolismo , Histonas/genética , Regulación de la Expresión GénicaRESUMEN
The MYCN oncoprotein drives the development of numerous neuroendocrine and pediatric tumors. Here we show that MYCN interacts with the nuclear RNA exosome, a 3'-5' exoribonuclease complex, and recruits the exosome to its target genes. In the absence of the exosome, MYCN-directed elongation by RNA polymerase II (RNAPII) is slow and non-productive on a large group of cell-cycle-regulated genes. During the S phase of MYCN-driven tumor cells, the exosome is required to prevent the accumulation of stalled replication forks and of double-strand breaks close to the transcription start sites. Upon depletion of the exosome, activation of ATM causes recruitment of BRCA1, which stabilizes nuclear mRNA decapping complexes, leading to MYCN-dependent transcription termination. Disruption of mRNA decapping in turn activates ATR, indicating transcription-replication conflicts. We propose that exosome recruitment by MYCN maintains productive transcription elongation during S phase and prevents transcription-replication conflicts to maintain the rapid proliferation of neuroendocrine tumor cells.
Asunto(s)
Núcleo Celular/enzimología , Proliferación Celular , Replicación del ADN , Exosomas/enzimología , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/enzimología , ARN Polimerasa II/metabolismo , Transcripción Genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Línea Celular Tumoral , Núcleo Celular/genética , Roturas del ADN de Doble Cadena , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Exosomas/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Proteína Proto-Oncogénica N-Myc/genética , Células 3T3 NIH , Neuroblastoma/genética , Neuroblastoma/patología , Regiones Promotoras Genéticas , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Polimerasa II/genética , Terminación de la Transcripción GenéticaRESUMEN
SPT6 is a histone chaperone that tightly binds RNA polymerase II (RNAPII) during transcription elongation. However, its primary role in transcription is uncertain. We used targeted protein degradation to rapidly deplete SPT6 in human cells and analyzed defects in RNAPII behavior by a multi-omics approach and mathematical modeling. Our data indicate that SPT6 is a crucial factor for RNAPII processivity and is therefore required for the productive transcription of protein-coding genes. Unexpectedly, SPT6 also has a vital role in RNAPII termination, as acute depletion induced readthrough transcription for thousands of genes. Long-term depletion of SPT6 induced cryptic intragenic transcription, as observed earlier in yeast. However, this phenotype was not observed upon acute SPT6 depletion and therefore can be attributed to accumulated epigenetic perturbations in the prolonged absence of SPT6. In conclusion, targeted degradation of SPT6 allowed the temporal discrimination of its function as an epigenetic safeguard and RNAPII elongation factor.
Asunto(s)
ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Factores de Transcripción/metabolismo , Línea Celular , Replicación del ADN , Humanos , Ácidos Indolacéticos/farmacología , Poliadenilación , Proteolisis/efectos de los fármacos , ARN/biosíntesis , ARN Polimerasa II/genética , Factores de Transcripción/genéticaRESUMEN
The MYC oncoprotein globally affects the function of RNA polymerase II (RNAPII). The ability of MYC to promote transcription elongation depends on its ubiquitylation. Here, we show that MYC and PAF1c (polymerase II-associated factor 1 complex) interact directly and mutually enhance each other's association with active promoters. PAF1c is rapidly transferred from MYC onto RNAPII. This transfer is driven by the HUWE1 ubiquitin ligase and is required for MYC-dependent transcription elongation. MYC and HUWE1 promote histone H2B ubiquitylation, which alters chromatin structure both for transcription elongation and double-strand break repair. Consistently, MYC suppresses double-strand break accumulation in active genes in a strictly PAF1c-dependent manner. Depletion of PAF1c causes transcription-dependent accumulation of double-strand breaks, despite widespread repair-associated DNA synthesis. Our data show that the transfer of PAF1c from MYC onto RNAPII efficiently couples transcription elongation with double-strand break repair to maintain the genomic integrity of MYC-driven tumor cells.
Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Elongación de la Transcripción Genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Línea Celular Tumoral , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-myc/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , UbiquitinaciónRESUMEN
The transcription cycle of RNA polymerase II (RNAPII) is governed at multiple points by opposing actions of cyclin-dependent kinases (CDKs) and protein phosphatases, in a process with similarities to the cell division cycle. While important roles of the kinases have been established, phosphatases have emerged more slowly as key players in transcription, and large gaps remain in understanding of their precise functions and targets. Much of the earlier work focused on the roles and regulation of sui generis and often atypical phosphatases-FCP1, Rtr1/RPAP2, and SSU72-with seemingly dedicated functions in RNAPII transcription. Decisive roles in the transcription cycle have now been uncovered for members of the major phosphoprotein phosphatase (PPP) family, including PP1, PP2A, and PP4-abundant enzymes with pleiotropic roles in cellular signaling pathways. These phosphatases appear to act principally at the transitions between transcription cycle phases, ensuring fine control of elongation and termination. Much is still unknown, however, about the division of labor among the PPP family members, and their possible regulation by or of the transcriptional kinases. CDKs active in transcription have recently drawn attention as potential therapeutic targets in cancer and other diseases, raising the prospect that the phosphatases might also present opportunities for new drug development. Here we review the current knowledge and outstanding questions about phosphatases in the context of the RNAPII transcription cycle.
Asunto(s)
Fosfoproteínas Fosfatasas/metabolismo , ARN Polimerasa II/genética , Transcripción Genética/genética , Animales , Sistemas de Liberación de Medicamentos , Humanos , Fosfoproteínas Fosfatasas/genéticaRESUMEN
Oncoproteins of the MYC family drive the development of numerous human tumours1. In unperturbed cells, MYC proteins bind to nearly all active promoters and control transcription by RNA polymerase II2,3. MYC proteins can also coordinate transcription with DNA replication4,5 and promote the repair of transcription-associated DNA damage6, but how they exert these mechanistically diverse functions is unknown. Here we show that MYC dissociates from many of its binding sites in active promoters and forms multimeric, often sphere-like structures in response to perturbation of transcription elongation, mRNA splicing or inhibition of the proteasome. Multimerization is accompanied by a global change in the MYC interactome towards proteins involved in transcription termination and RNA processing. MYC multimers accumulate on chromatin immediately adjacent to stalled replication forks and surround FANCD2, ATR and BRCA1 proteins, which are located at stalled forks7,8. MYC multimerization is triggered in a HUWE16 and ubiquitylation-dependent manner. At active promoters, MYC multimers block antisense transcription and stabilize FANCD2 association with chromatin. This limits DNA double strand break formation during S-phase, suggesting that the multimerization of MYC enables tumour cells to proliferate under stressful conditions.
Asunto(s)
ARN Polimerasas Dirigidas por ADN , Humanos , Cromatina/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Roturas del ADN de Doble Cadena , Fase S , Sitios de Unión , ARN Mensajero/biosíntesisRESUMEN
Deregulated expression of MYC induces a dependence on the NUAK1 kinase, but the molecular mechanisms underlying this dependence have not been fully clarified. Here, we show that NUAK1 is a predominantly nuclear protein that associates with a network of nuclear protein phosphatase 1 (PP1) interactors and that PNUTS, a nuclear regulatory subunit of PP1, is phosphorylated by NUAK1. Both NUAK1 and PNUTS associate with the splicing machinery. Inhibition of NUAK1 abolishes chromatin association of PNUTS, reduces spliceosome activity, and suppresses nascent RNA synthesis. Activation of MYC does not bypass the requirement for NUAK1 for spliceosome activity but significantly attenuates transcription inhibition. Consequently, NUAK1 inhibition in MYC-transformed cells induces global accumulation of RNAPII both at the pause site and at the first exon-intron boundary but does not increase mRNA synthesis. We suggest that NUAK1 inhibition in the presence of deregulated MYC traps non-productive RNAPII because of the absence of correctly assembled spliceosomes.
Asunto(s)
Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Represoras/metabolismo , Empalmosomas/metabolismo , Transcripción Genética , Animales , Núcleo Celular/genética , Cromatina/genética , Regulación de la Expresión Génica , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Fosforilación , Proteínas Quinasas/genética , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Empalme del ARN , Proteínas Represoras/genética , Empalmosomas/genéticaRESUMEN
Obesity-induced diabetes affects >400 million people worldwide. Uncontrolled lipolysis (free fatty acid release from adipocytes) can contribute to diabetes and obesity. To identify future therapeutic avenues targeting this pathway, we performed a high-throughput screen and identified the extracellular-regulated kinase 3 (ERK3) as a hit. We demonstrated that ß-adrenergic stimulation stabilizes ERK3, leading to the formation of a complex with the cofactor MAP kinase-activated protein kinase 5 (MK5), thereby driving lipolysis. Mechanistically, we identified a downstream target of the ERK3/MK5 pathway, the transcription factor FOXO1, which promotes the expression of the major lipolytic enzyme ATGL. Finally, we provide evidence that targeted deletion of ERK3 in mouse adipocytes inhibits lipolysis, but elevates energy dissipation, promoting lean phenotype and ameliorating diabetes. Thus, ERK3/MK5 represents a previously unrecognized signaling axis in adipose tissue and an attractive target for future therapies aiming to combat obesity-induced diabetes.
Asunto(s)
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatología , Metabolismo Energético/genética , Lipólisis/genética , Proteína Quinasa 6 Activada por Mitógenos/genética , Proteína Quinasa 6 Activada por Mitógenos/metabolismo , Obesidad/complicaciones , Células 3T3 , Tejido Adiposo/enzimología , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Proteína Forkhead Box O1/metabolismo , Eliminación de Gen , Células HEK293 , Humanos , Hipoglucemiantes/uso terapéutico , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipasa/genética , Lipasa/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genéticaRESUMEN
The MYC oncoprotein binds to promoter-proximal regions of virtually all transcribed genes and enhances RNA polymerase II (Pol II) function, but its precise mode of action is poorly understood. Using mass spectrometry of both MYC and Pol II complexes, we show here that MYC controls the assembly of Pol II with a small set of transcription elongation factors that includes SPT5, a subunit of the elongation factor DSIF. MYC directly binds SPT5, recruits SPT5 to promoters, and enables the CDK7-dependent transfer of SPT5 onto Pol II. Consistent with known functions of SPT5, MYC is required for fast and processive transcription elongation. Intriguingly, the high levels of MYC that are expressed in tumors sequester SPT5 into non-functional complexes, thereby decreasing the expression of growth-suppressive genes. Altogether, these results argue that MYC controls the productive assembly of processive Pol II elongation complexes and provide insight into how oncogenic levels of MYC permit uncontrolled cellular growth.
Asunto(s)
Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas c-myc/genética , ARN Polimerasa II/genética , Transcripción Genética , Factores de Elongación Transcripcional/genética , Línea Celular Tumoral , Proliferación Celular/genética , Quinasas Ciclina-Dependientes/genética , Chaperonas de Histonas/genética , Humanos , Neoplasias/genética , Regiones Promotoras Genéticas , Quinasa Activadora de Quinasas Ciclina-DependientesRESUMEN
Inflammation is essential for host defense but can cause tissue damage and organ failure if unchecked. How the inflammation is resolved remains elusive. Here we report that the transcription factor Miz1 was required for terminating lipopolysaccharide (LPS)-induced inflammation. Genetic disruption of the Miz1 POZ domain, which is essential for the transactivation or repression activity of Miz1, resulted in hyperinflammation, lung injury and greater mortality in LPS-treated mice but a lower bacterial load and mortality in mice with Pseudomonas aeruginosa pneumonia. Loss of the Miz1 POZ domain prolonged the expression of proinflammatory cytokines. After stimulation, Miz1 was phosphorylated at Ser178, which was required for recruitment of the histone deacetylase HDAC1 to repress transcription of the gene encoding C/EBP-δ, an amplifier of inflammation. Our data provide a long-sought mechanism underlying the resolution of LPS-induced inflammation.
Asunto(s)
Lesión Pulmonar Aguda/inmunología , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Lesión Pulmonar Aguda/genética , Animales , Citocinas/metabolismo , Represión Enzimática/genética , Histona Desacetilasa 1/metabolismo , Tolerancia Inmunológica , Inflamación/genética , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutagénesis Sitio-Dirigida , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Fosforilación , Proteínas Inhibidoras de STAT Activados/genética , Infecciones por Pseudomonas/genética , Proteínas Represoras/genética , Activación Transcripcional/genética , Ubiquitina-Proteína LigasasRESUMEN
MYC is an oncogenic transcription factor that binds globally to active promoters and promotes transcriptional elongation by RNA polymerase II (RNAPII)1,2. Deregulated expression of the paralogous protein MYCN drives the development of neuronal and neuroendocrine tumours and is often associated with a particularly poor prognosis3. Here we show that, similar to MYC, activation of MYCN in human neuroblastoma cells induces escape of RNAPII from promoters. If the release of RNAPII from transcriptional pause sites (pause release) fails, MYCN recruits BRCA1 to promoter-proximal regions. Recruitment of BRCA1 prevents MYCN-dependent accumulation of stalled RNAPII and enhances transcriptional activation by MYCN. Mechanistically, BRCA1 stabilizes mRNA decapping complexes and enables MYCN to suppress R-loop formation in promoter-proximal regions. Recruitment of BRCA1 requires the ubiquitin-specific protease USP11, which binds specifically to MYCN when MYCN is dephosphorylated at Thr58. USP11, BRCA1 and MYCN stabilize each other on chromatin, preventing proteasomal turnover of MYCN. Because BRCA1 is highly expressed in neuronal progenitor cells during early development4 and MYC is less efficient than MYCN in recruiting BRCA1, our findings indicate that a cell-lineage-specific stress response enables MYCN-driven tumours to cope with deregulated RNAPII function.
Asunto(s)
Proteína BRCA1/metabolismo , Proteína Proto-Oncogénica N-Myc/metabolismo , ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Regulación de la Expresión Génica , Humanos , Neuroblastoma/genética , Neuroblastoma/patología , Estabilidad Proteica , Tioléster Hidrolasas/metabolismoRESUMEN
OBJECTIVE: The hallmark oncogene MYC drives the progression of most tumours, but direct inhibition of MYC by a small-molecule drug has not reached clinical testing. MYC is a transcription factor that depends on several binding partners to function. We therefore explored the possibility of targeting MYC via its interactome in pancreatic ductal adenocarcinoma (PDAC). DESIGN: To identify the most suitable targets among all MYC binding partners, we constructed a targeted shRNA library and performed screens in cultured PDAC cells and tumours in mice. RESULTS: Unexpectedly, many MYC binding partners were found to be important for cultured PDAC cells but dispensable in vivo. However, some were also essential for tumours in their natural environment and, among these, the ATPases RUVBL1 and RUVBL2 ranked first. Degradation of RUVBL1 by the auxin-degron system led to the arrest of cultured PDAC cells but not untransformed cells and to complete tumour regression in mice, which was preceded by immune cell infiltration. Mechanistically, RUVBL1 was required for MYC to establish oncogenic and immunoevasive gene expression identifying the RUVBL1/2 complex as a druggable vulnerability in MYC-driven cancer. CONCLUSION: One implication of our study is that PDAC cell dependencies are strongly influenced by the environment, so genetic screens should be performed in vitro and in vivo. Moreover, the auxin-degron system can be applied in a PDAC model, allowing target validation in living mice. Finally, by revealing the nuclear functions of the RUVBL1/2 complex, our study presents a pharmaceutical strategy to render pancreatic cancers potentially susceptible to immunotherapy.
Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Carcinoma Ductal Pancreático , ADN Helicasas , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas c-myc , Animales , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Ratones , Humanos , ADN Helicasas/genética , ADN Helicasas/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Línea Celular Tumoral , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genéticaRESUMEN
MYC is an unstable protein, and its turnover is controlled by the ubiquitin system. Ubiquitination enhances MYC-dependent transactivation, but the underlying mechanism remains unresolved. Here we show that MYC proteasomal turnover is dispensable for loading of RNA polymerase II (RNAPII). In contrast, MYC turnover is essential for recruitment of TRRAP, histone acetylation, and binding of BRD4 and P-TEFb to target promoters, leading to phosphorylation of RNAPII and transcriptional elongation. In the absence of histone acetylation and P-TEFb recruitment, MYC associates with the PAF1 complex (PAF1C) through a conserved domain in the MYC amino terminus ("MYC box I"). Depletion of the PAF1C subunit CDC73 enhances expression of MYC target genes, suggesting that the MYC/PAF1C complex can inhibit transcription. Because several ubiquitin ligases bind to MYC via the same domain ("MYC box II") that interacts with TRRAP, we propose that degradation of MYC limits the accumulation of MYC/PAF1C complexes during transcriptional activation.
Asunto(s)
Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Elongación de la Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitinación , Acetilación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular , Proliferación Celular , Ensamble y Desensamble de Cromatina , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Complejos Multiproteicos , Mutación , Proteínas Nucleares/genética , Fosfoproteínas/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Regiones Promotoras Genéticas , Proteolisis , Proteínas Proto-Oncogénicas c-myc/genética , Interferencia de ARN , ARN Polimerasa II/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo , Transfección , Proteínas Supresoras de Tumor/genéticaRESUMEN
BACKGROUND & AIMS: Primary liver cancer (PLC) comprises hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), two frequent and lethal tumour types that differ regarding their tumour biology and responses to cancer therapies. Liver cells harbour a high degree of cellular plasticity and can give rise to either HCC or iCCA. However, little is known about the cell-intrinsic mechanisms directing an oncogenically transformed liver cell to either HCC or iCCA. The scope of this study was to identify cell-intrinsic factors determining lineage commitment in PLC. METHODS: Cross-species transcriptomic and epigenetic profiling was applied to murine HCCs and iCCAs and to two human PLC cohorts. Integrative data analysis comprised epigenetic Landscape In Silico deletion Analysis (LISA) of transcriptomic data and Hypergeometric Optimization of Motif EnRichment (HOMER) analysis of chromatin accessibility data. Identified candidate genes were subjected to functional genetic testing in non-germline genetically engineered PLC mouse models (shRNAmir knockdown or overexpression of full-length cDNAs). RESULTS: Integrative bioinformatic analyses of transcriptomic and epigenetic data pinpointed the Forkhead-family transcription factors FOXA1 and FOXA2 as MYC-dependent determination factors of the HCC lineage. Conversely, the ETS family transcription factor ETS1 was identified as a determinant of the iCCA lineage, which was found to be suppressed by MYC during HCC development. Strikingly, shRNA-mediated suppression of FOXA1 and FOXA2 with concomitant ETS1 expression fully switched HCC to iCCA development in PLC mouse models. CONCLUSIONS: The herein reported data establish MYC as a key determinant of lineage commitment in PLC and provide a molecular explanation why common liver-damaging risk factors such as alcoholic or non-alcoholic steatohepatitis can lead to either HCC or iCCA. IMPACT AND IMPLICATIONS: Liver cancer is a major health problem and comprises hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), two frequent and lethal tumour types that differ regarding their morphology, tumour biology, and responses to cancer therapies. We identified the transcription factor and oncogenic master regulator MYC as a switch between HCC and iCCA development. When MYC levels are high at the time point when a hepatocyte becomes a tumour cell, an HCC is growing out. Conversely, if MYC levels are low at this time point, the result is the outgrowth of an iCCA. Our study provides a molecular explanation why common liver-damaging risk factors such as alcoholic or non-alcoholic steatohepatitis can lead to either HCC or iCCA. Furthermore, our data harbour potential for the development of better PLC therapies.
Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Hígado Graso , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Factores de Transcripción/metabolismo , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/patologíaRESUMEN
Nutrient overload in combination with decreased energy dissipation promotes obesity and diabetes. Obesity results in a hormonal imbalance, which among others activates G protein-coupled receptors utilizing diacylglycerol (DAG) as secondary messenger. Protein kinase D1 (PKD1) is a DAG effector, which integrates multiple nutritional and hormonal inputs, but its physiological role in adipocytes is unknown. Here, we show that PKD1 promotes lipogenesis and suppresses mitochondrial fragmentation, biogenesis, respiration, and energy dissipation in an AMP-activated protein kinase (AMPK)-dependent manner. Moreover, mice lacking PKD1 in adipocytes are resistant to diet-induced obesity due to elevated energy expenditure. Beiging of adipocytes promotes energy expenditure and counteracts obesity. Consistently, deletion of PKD1 promotes expression of the ß3-adrenergic receptor (ADRB3) in a CCAAT/enhancer binding protein (C/EBP)-α- and δ-dependent manner, which leads to the elevated expression of beige markers in adipocytes and subcutaneous adipose tissue. Finally, deletion of PKD1 in adipocytes improves insulin sensitivity and ameliorates liver steatosis. Thus, depletion of PKD1 in adipocytes increases energy dissipation by several complementary mechanisms and might represent an attractive strategy to treat obesity and its related complications.
Asunto(s)
Adipocitos/metabolismo , Adiposidad , Metabolismo Energético , Hígado Graso/metabolismo , Obesidad/metabolismo , Proteína Quinasa C/metabolismo , Grasa Subcutánea/metabolismo , Células 3T3-L1 , Adipocitos/patología , Animales , Proteína delta de Unión al Potenciador CCAAT/genética , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Femenino , Humanos , Masculino , Ratones , Ratones Mutantes , Obesidad/genética , Obesidad/patología , Proteína Quinasa C/genética , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismo , Sistemas de Mensajero Secundario/genética , Grasa Subcutánea/fisiologíaRESUMEN
Transcription factors of the MYC family are deregulated in the majority of all human cancers. Oncogenic levels of MYC reprogram cellular metabolism, a hallmark of cancer development, to sustain the high rate of proliferation of cancer cells. Conversely, cells need to modulate MYC function according to the availability of nutrients, in order to avoid a metabolic collapse. Here, we review recent evidence that the multiple interactions of MYC with cell metabolism are mutual and review mechanisms that control MYC levels and function in response to metabolic stress situations. The main hypothesis we put forward is that regulation of MYC levels is an integral part of the adaptation of cells to nutrient deprivation. Since such mechanisms would be particularly relevant in tumor cells, we propose that-in contrast to growth factor-dependent controls-they are not disrupted during tumorigenesis and that maintaining flexibility of expression is integral to MYC's oncogenic function.
Asunto(s)
Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Apoptosis , Poliaminas Biogénicas/biosíntesis , Proteína Forkhead Box O1/metabolismo , Genes myc , Glucosa/metabolismo , Glutamina/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Redes y Vías Metabólicas , Neoplasias/genética , Neoplasias/patología , Nucleótidos/biosíntesis , Proteínas Proto-Oncogénicas c-myc/genética , Estrés FisiológicoRESUMEN
Deregulated expression of MYC enhances glutamine utilization and renders cell survival dependent on glutamine, inducing "glutamine addiction". Surprisingly, colon cancer cells that express high levels of MYC due to WNT pathway mutations are not glutamine-addicted but undergo a reversible cell cycle arrest upon glutamine deprivation. We show here that glutamine deprivation suppresses translation of endogenous MYC via the 3'-UTR of the MYC mRNA, enabling escape from apoptosis. This regulation is mediated by glutamine-dependent changes in adenosine-nucleotide levels. Glutamine deprivation causes a global reduction in promoter association of RNA polymerase II (RNAPII) and slows transcriptional elongation. While activation of MYC restores binding of MYC and RNAPII function on most promoters, restoration of elongation is imperfect and activation of MYC in the absence of glutamine causes stalling of RNAPII on multiple genes, correlating with R-loop formation. Stalling of RNAPII and R-loop formation can cause DNA damage, arguing that the MYC 3'-UTR is critical for maintaining genome stability when ribonucleotide levels are low.