Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499346

RESUMEN

Protein secretion plays a central role in modulating interactions of the human pathogen Listeria monocytogenes with its environment. Recently, secretion of RNA has emerged as an important strategy used by the pathogen to manipulate the host cell response to its advantage. In general, the Sec-dependent translocation pathway is a major route for protein secretion in L. monocytogenes, but mechanistic insights into the secretion of RNA by these pathways are lacking. Apart from the classical SecA1 secretion pathway, L. monocytogenes also encodes for a SecA paralogue (SecA2) which targets the export of a specific subset of proteins, some of which are involved in virulence. Here, we demonstrated that SecA2 co-sediments with translating ribosomes and provided evidence that it associates with a subset of secreted small non-coding RNAs (sRNAs) that induce high levels of IFN-ß response in host cells. We found that enolase, which is translocated by a SecA2-dependent mechanism, binds to several sRNAs, suggesting a pathway by which sRNAs are targeted to the supernatant of L. monocytogenes.


Asunto(s)
Listeria monocytogenes , Proteínas de Transporte de Membrana , Humanos , Proteínas de Transporte de Membrana/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , ARN/metabolismo
2.
Cell Rep ; 41(10): 111776, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36476862

RESUMEN

The chaperone SecB has been implicated in de novo protein folding and translocation across the membrane, but it remains unclear which nascent polypeptides SecB binds, when during translation SecB acts, how SecB function is coordinated with other chaperones and targeting factors, and how polypeptide engagement contributes to protein biogenesis. Using selective ribosome profiling, we show that SecB binds many nascent cytoplasmic and translocated proteins generally late during translation and controlled by the chaperone trigger factor. Revealing an uncharted role in co-translational translocation, inner membrane proteins (IMPs) are the most prominent nascent SecB interactors. Unlike other substrates, IMPs are bound early during translation, following the membrane targeting by the signal recognition particle. SecB remains bound until translation is terminated, and contributes to membrane insertion. Our study establishes a role of SecB in the co-translational maturation of proteins from all cellular compartments and functionally implicates cytosolic chaperones in membrane protein biogenesis.


Asunto(s)
Proteínas de la Membrana , Perfilado de Ribosomas
3.
Trends Biotechnol ; 38(1): 1-4, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31718803

RESUMEN

Over the past 350 years, Merck has developed science and technology especially in health care, life sciences, and performance materials. To celebrate so many productive years, Merck conducted a special expanded anniversary edition of the Innovation Cup in combination with the scientific conference Curious2018 - Future Insight in Darmstadt, Germany.


Asunto(s)
Industria Farmacéutica/organización & administración , Biología Sintética , Distinciones y Premios , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA