Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 7(7): e1002194, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21829378

RESUMEN

One quadrillion synapses are laid in the first two years of postnatal construction of the human brain, which are then pruned until age 10 to 500 trillion synapses composing the final network. Genetic epilepsies are the most common neurological diseases with onset during pruning, affecting 0.5% of 2-10-year-old children, and these epilepsies are often characterized by spontaneous remission. We previously described a remitting epilepsy in the Lagotto romagnolo canine breed. Here, we identify the gene defect and affected neurochemical pathway. We reconstructed a large Lagotto pedigree of around 34 affected animals. Using genome-wide association in 11 discordant sib-pairs from this pedigree, we mapped the disease locus to a 1.7 Mb region of homozygosity in chromosome 3 where we identified a protein-truncating mutation in the Lgi2 gene, a homologue of the human epilepsy gene LGI1. We show that LGI2, like LGI1, is neuronally secreted and acts on metalloproteinase-lacking members of the ADAM family of neuronal receptors, which function in synapse remodeling, and that LGI2 truncation, like LGI1 truncations, prevents secretion and ADAM interaction. The resulting epilepsy onsets at around seven weeks (equivalent to human two years), and remits by four months (human eight years), versus onset after age eight in the majority of human patients with LGI1 mutations. Finally, we show that Lgi2 is expressed highly in the immediate post-natal period until halfway through pruning, unlike Lgi1, which is expressed in the latter part of pruning and beyond. LGI2 acts at least in part through the same ADAM receptors as LGI1, but earlier, ensuring electrical stability (absence of epilepsy) during pruning years, preceding this same function performed by LGI1 in later years. LGI2 should be considered a candidate gene for common remitting childhood epilepsies, and LGI2-to-LGI1 transition for mechanisms of childhood epilepsy remission.


Asunto(s)
Epilepsias Parciales/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas ADAM/metabolismo , Animales , Encéfalo/metabolismo , Células COS , Chlorocebus aethiops , Perros , Epilepsias Parciales/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Estudio de Asociación del Genoma Completo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Polimorfismo de Nucleótido Simple/genética , Unión Proteica/fisiología , Ratas
2.
PLoS Genet ; 1(4): e50, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16254601

RESUMEN

Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples), the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.


Asunto(s)
Dislexia/genética , Predisposición Genética a la Enfermedad , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Receptores Inmunológicos/genética , Receptores Inmunológicos/fisiología , Empalme Alternativo , Animales , Mapeo Cromosómico , Dislexia/metabolismo , Exones , Salud de la Familia , Humanos , Datos de Secuencia Molecular , Neuronas/metabolismo , Linaje , Filogenia , Polimorfismo Genético , Especificidad de la Especie , Proteínas Roundabout
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA