Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; 62(11): 2985-3001, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33337242

RESUMEN

In the food industry, there is a need to use the properties of antioxidants and antimicrobials effectively to prevent microbial growth in foods, as well as to retard the oxidation of fats to delay rancidity. Nevertheless, the emerging concern about the negative effects of synthetic antioxidants and antimicrobials on consumers' health along with the advantages of natural substances have led to more fundamental research to investigate the mechanism of action and toxicity of natural antioxidants and antimicrobials. There is also a need to establish in each country an appropriate regulatory scheme to assure consumers of the safety and efficacy of these materials. Thus, this present review provides a detailed overview of the different antioxidant and antimicrobial groups, focusing on their properties, mechanism of action, and applicability in the food industry to be a guide for students and researchers.


Asunto(s)
Antiinfecciosos , Antioxidantes , Antibacterianos , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Alimentos , Conservantes de Alimentos/farmacología , Humanos
2.
Adv Food Nutr Res ; 103: 229-271, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36863836

RESUMEN

A considerable mass of plastics has been released into the marine environment annually through different human activities, including industrial, agriculture, medical, pharmaceutical and daily care products. These materials are decomposed into smaller particles such as microplastic (MP) and nanoplastic (NP). Hence, these particles can be transported and distributed in coastal and aquatic areas and are ingested by the majority of marine biotas, including seafood products, thus causing the contamination of the different parts of aquatic ecosystems. In fact, seafood involves a wide diversity of edible marine organisms, such as fish, crustaceans, molluscs, and echinoderms, which can ingest the micro/nanoplastics particles, and then transmit them to humans through dietary consumption. Consequently, these pollutants can cause several toxic and adverse impacts on human health and the marine ecosystem. Therefore, this chapter provides information on the potential risks of marine micro/nanoplastics on seafood safety and human health.


Asunto(s)
Ecosistema , Microplásticos , Animales , Humanos , Plásticos , Agricultura , Alimentos Marinos
3.
Adv Food Nutr Res ; 102: 47-92, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36064296

RESUMEN

Fermented foods are of great importance for their role in preserving nutrients and enriching the human diet. Fermentation ensures longer shelf life and microbiological safety of food. Natural bioactive compounds have been paid attention as nutraceuticals or functional ingredients, which have health-promoting components since polysaccharides, especially chitosan, chitin and their derivatives, are biocompatible and biodegradable, biorenewable, without toxic properties and environmentally friendly. They have been applied in several fields such as medicine, agriculture, and food industry. This chapter provides information on polysaccharides obtained from crustacean as bioactive compounds as well as their effects in fermented foods.


Asunto(s)
Alimentos Fermentados , Fermentación , Microbiología de Alimentos , Humanos , Polisacáridos , Alimentos Marinos
4.
Food Chem ; 368: 130831, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34403999

RESUMEN

This research aimed to apply nanotechnology for nanoformulation of Laurus nobilis essential oil (EO) by ultrasonic emulsification method and characterization of nano-form: particle size, viscosity, polydispersity index, thermodynamic stability, and surface tension. The antimicrobial activity of laurel EO nanoemulsion (LEON) and laurel EO was also investigated against a panel of ten food-borne pathogens and fish spoilage bacteria. The GC-MS analysis of EO revealed that 1,8-Cineole was the main volatile compound. According to disc-diffusion results, LEON was more effective against Gram-positive pathogen bacteria of Staphylococcus aureus and Enterococcus faecalis than EO. Laurel oil demonstrated a higher inhibitory effect against fish spoilage bacteria (6.19 to 18.5 mm). The MICs values of LEON and laurel EO ranged from 6.25 to >25 mg/mL and from 1.56 to >25 mg/mL, respectively. Nanoemulsion and oil exhibited the best bactericidal activity against Pseudomonas luteola. Therefore, LEON can be developed as a natural antimicrobial agent in food industry.


Asunto(s)
Antiinfecciosos , Aceites Volátiles , Antiinfecciosos/farmacología , Bacterias , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología , Pseudomonas , Sesquiterpenos
5.
Artículo en Inglés | MEDLINE | ID: mdl-24719640

RESUMEN

The chemical composition, antioxidant and antimicrobial activities, and the preservative effect of Thymus capitata essential oil against Listeria monocytogenes inoculated in minced beef meat were evaluated. The essential oil extracted was chemically analyzed by gas chromatography-mass spectrometry. Nineteen components were identified, of which carvacrol represented (88.89%) of the oil. The antioxidant activity was assessed in vitro by using both the DPPH and the ABTS assays. The findings showed that the essential oil exhibited high antioxidant activity, which was comparable to the reference standards (BHT and ascorbic acid) with IC50 values of 44.16 and 0.463 µ g/mL determined by the free-radical scavenging DPPH and ABTS assays, respectively. Furthermore, the essential oil was evaluated for its antimicrobial activity using disc agar diffusion and microdilution methods. The results demonstrated that the zone of inhibition varied from moderate to strong (15-80 mm) and the minimum inhibition concentration values ranged from 0.32 to 20 mg/mL. In addition, essential oil evaluated in vivo against Listeria monocytogenes showed clear and strong inhibitory effect. The application of 0.25 or 1% (v/w) essential oil of T. capitata to minced beef significantly reduced the L. monocytogenes population when compared to those of control samples (P-value <0.01).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA