Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Mol Life Sci ; 80(4): 97, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36930302

RESUMEN

The processing of the amyloid precursor protein (APP) is one of the key events contributing to Alzheimer's disease (AD) etiology. Canonical cleavages by ß- and γ-secretases lead to Aß production which accumulate in amyloid plaques. Recently, the matrix metalloprotease MT5-MMP, referred to as η-secretase, has been identified as a novel APP cleaving enzyme producing a transmembrane fragment, ηCTF that undergoes subsequent cleavages by α- and ß-secretases yielding the Aηα and AÎ·ß peptides, respectively. The functions and contributions of ηCTF and its related fragments to AD pathology are poorly understood. In this study, we designed a novel immunological probe referred to as ηCTF-NTer antibody that specifically interacts with the N-terminal part of ηCTF targeting ηCTF, Aηα, AÎ·ß but not C99, C83 and Aß. We examined the fate and localization of ηCTF fragment in various cell models and in mice. We found that overexpressed ηCTF undergoes degradation in the proteasomal and autophagic pathways and accumulates mainly in the Golgi and in endosomes. Moreover, we observed the presence of ηCTF in small extracellular vesicles purified from neuroblastoma cells or from mouse brains expressing ηCTF. Importantly, the expression of ηCTF in fibroblasts devoid on APP leads to Aß production demonstrating its contribution to the amyloidogenic pathway. Finally, we observed an ηCTF-like immunoreactivity around amyloid plaques and an age-dependent accumulation of ηCTF in the triple-transgenic mouse AD model. Thus, our study suggests that the ηCTF fragment likely contributes to AD pathology by its exosomal spreading and involvement in Aß production.


Asunto(s)
Enfermedad de Alzheimer , Vesículas Extracelulares , Ratones , Animales , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Placa Amiloide , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Endosomas/metabolismo , Vesículas Extracelulares/metabolismo , Péptidos beta-Amiloides/metabolismo
2.
Int J Mol Sci ; 21(1)2019 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-31881723

RESUMEN

Myelodysplastic syndrome (MDS) defines a group of heterogeneous hematologic malignancies that often progresses to acute myeloid leukemia (AML). The leading treatment for high-risk MDS patients is azacitidine (Aza, Vidaza®), but a significant proportion of patients are refractory and all patients eventually relapse after an undefined time period. Therefore, new therapies for MDS are urgently needed. We present here evidence that acadesine (Aca, Acadra®), a nucleoside analog exerts potent anti-leukemic effects in both Aza-sensitive (OCI-M2S) and resistant (OCI-M2R) MDS/AML cell lines in vitro. Aca also exerts potent anti-leukemic effect on bone marrow cells from MDS/AML patients ex-vivo. The effect of Aca on MDS/AML cell line proliferation does not rely on apoptosis induction. It is also noteworthy that Aca is efficient to kill MDS cells in a co-culture model with human medullary stromal cell lines, that mimics better the interaction occurring in the bone marrow. These initial findings led us to initiate a phase I/II clinical trial using Acadra® in 12 Aza refractory MDS/AML patients. Despite a very good response in one out 4 patients, we stopped this trial because the highest Aca dose (210 mg/kg) caused serious renal side effects in several patients. In conclusion, the side effects of high Aca doses preclude its use in patients with strong comorbidities.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Leucemia Mieloide Aguda/tratamiento farmacológico , Síndromes Mielodisplásicos/tratamiento farmacológico , Ribonucleósidos/uso terapéutico , Anciano , Aminoimidazol Carboxamida/farmacología , Aminoimidazol Carboxamida/uso terapéutico , Apoptosis/efectos de los fármacos , Azacitidina/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos Clínicos como Asunto , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/patología , Recurrencia , Ribonucleósidos/farmacología , Insuficiencia del Tratamiento
3.
Autophagy ; 17(12): 4363-4385, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34030589

RESUMEN

Parkinson disease (PD)-affected brains show consistent endoplasmic reticulum (ER) stress and mitophagic dysfunctions. The mechanisms underlying these perturbations and how they are directly linked remain a matter of questions. XBP1 is a transcription factor activated upon ER stress after unconventional splicing by the nuclease ERN1/IREα thereby yielding XBP1s, whereas PINK1 is a kinase considered as the sensor of mitochondrial physiology and a master gatekeeper of mitophagy process. We showed that XBP1s transactivates PINK1 in human cells, primary cultured neurons and mice brain, and triggered a pro-mitophagic phenotype that was fully dependent of endogenous PINK1. We also unraveled a PINK1-dependent phosphorylation of XBP1s that conditioned its nuclear localization and thereby, governed its transcriptional activity. PINK1-induced XBP1s phosphorylation occurred at residues reminiscent of, and correlated to, those phosphorylated in substantia nigra of sporadic PD-affected brains. Overall, our study delineated a functional loop between XBP1s and PINK1 governing mitophagy that was disrupted in PD condition.Abbreviations: 6OHDA: 6-hydroxydopamine; baf: bafilomycin A1; BECN1: beclin 1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CCCP: carbonyl cyanide chlorophenylhydrazone; COX8A: cytochrome c oxidase subunit 8A; DDIT3/CHOP: DNA damage inducible transcript 3; EGFP: enhanced green fluorescent protein; ER: endoplasmic reticulum; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FACS: fluorescence-activated cell sorting; HSPD1/HSP60: heat shock protein family D (Hsp60) member 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFN2: mitofusin 2; OPTN: optineurin; PD: Parkinson disease; PINK1: PTEN-induced kinase 1; PCR: polymerase chain reaction:; PRKN: parkin RBR E3 ubiquitin protein ligase; XBP1s [p-S61A]: XBP1s phosphorylated at serine 61; XBP1s [p-T48A]: XBP1s phosphorylated at threonine 48; shRNA: short hairpin RNA, SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TM: tunicamycin; TMRM: tetramethyl rhodamine methylester; TOMM20: translocase of outer mitochondrial membrane 20; Toy: toyocamycin; TP: thapsigargin; UB: ubiquitin; UB (S65): ubiquitin phosphorylated at serine 65; UPR: unfolded protein response, XBP1: X-box binding protein 1; XBP1s: spliced X-box binding protein 1.


Asunto(s)
Mitofagia , Enfermedad de Parkinson , Proteínas Quinasas/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Animales , Autofagia , Endorribonucleasas , Ratones , Mitofagia/genética , Enfermedad de Parkinson/genética , Fosforilación , Proteínas Serina-Treonina Quinasas
4.
Cells ; 8(12)2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31795302

RESUMEN

Dysregulation of the Endoplasmic Reticulum (ER) Ca2+ homeostasis and subsequent ER stress activation occur in Alzheimer Disease (AD). We studied the contribution of the human truncated isoform of the sarco-endoplasmic reticulum Ca2+ ATPase 1 (S1T) to AD. We examined S1T expression in human AD-affected brains and its functional consequences in cellular and transgenic mice AD models. S1T expression is increased in sporadic AD brains and correlates with amyloid ß (Aß) and ER stress chaperone protein levels. Increased S1T expression was also observed in human neuroblastoma cells expressing Swedish-mutated ß-amyloid precursor protein (ßAPP) or treated with Aß oligomers. Lentiviral overexpression of S1T enhances in return the production of APP C-terminal fragments and Aß through specific increases of ß-secretase expression and activity, and triggers neuroinflammation. We describe a molecular interplay between S1T-dependent ER Ca2+ leak, ER stress and ßAPP-derived fragments that could contribute to AD setting and/or progression.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Biomarcadores , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Femenino , Humanos , Inmunohistoquímica , Mediadores de Inflamación/metabolismo , Isoenzimas , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Modelos Biológicos , Agregación Patológica de Proteínas , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transducción de Señal
5.
Cell Death Differ ; 25(5): 873-884, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29352272

RESUMEN

p53 is a transcription factor that is implicated in the control of both apoptotic and autophagic cell death. This tumor suppressor elicits both pro-autophagic and anti-autophagic phenotypes depending of its intracellular localization. The ability of p53 to repress autophagy has been exclusively associated to its cytoplasmic localization. Here, we show that transcriptional activity of p53 also contributes to autophagy down-regulation. Thus, nuclear p53 controls PINK1, a key protein involved in the control of mitophagy, by repressing its promoter activity, protein and mRNA levels, ex-vivo and in vivo. We establish that deletion of an identified p53 responsive element on PINK1 promoter impacts p53-mediated PINK1 transcriptional repression and we demonstrate a p53-PINK1 physical interaction by chromatin immunoprecipitation. Accordingly, we show that only nuclear p53 accounts for its ability to repress PINK1 gene transcription. Further, we demonstrate ex-vivo and in vivo that p53 invalidation in human cells increases LC3 maturation as well as optineurin and NDP52 autophagy receptors expression and down-regulates TIM23, TOM20 and HSP60 mitophagy markers. Importantly, this phenotype is mimicked by TP53 invalidation in mice brain. Finally, by combining pharmacological and genetic approaches, we show that the p53-mediated negative regulation of autophagy is PINK1-dependent. Thus pifithrin-α-mediated blockade of p53 transcriptional activity enhances LC3 maturation and reduces p62, TIM23, TOM20 and HSP60 protein levels. This pifithrin-α-associated pro-mitophagy phenotype is fully abolished by PINK1 depletion. This data unravels a novel pathway by which nuclear p53 can repress autophagy/mitophagy that could underlie important dysfunctions in both neurodegenerative and cancer diseases.


Asunto(s)
Autofagia , Regulación hacia Abajo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias/metabolismo , Proteínas Quinasas/biosíntesis , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Mitofagia , Neoplasias/genética , Neoplasias/patología , Proteínas Quinasas/genética , Proteína p53 Supresora de Tumor/genética
6.
Biol Psychiatry ; 83(5): 416-427, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28587718

RESUMEN

BACKGROUND: Mitophagy and mitochondrial dynamics alterations are two major hallmarks of neurodegenerative diseases. Dysfunctional mitochondria accumulate in Alzheimer's disease-affected brains by yet unexplained mechanisms. METHODS: We combined cell biology, molecular biology, and pharmacological approaches to unravel a novel molecular pathway by which presenilins control phosphatase and tensin homolog-induced kinase 1 (Pink-1) expression and transcription. In vivo approaches were carried out on various transgenic and knockout animals as well as in adeno-associated virus-infected mice. Functional readout and mitochondrial physiology (mitochondrial potential) were assessed by combined procedures including flow cytometry, live imaging analysis, and immunohistochemistry. RESULTS: We show that presenilins 1 and 2 trigger opposite effects on promoter transactivation, messenger RNA, and protein expression of Pink-1. This control is linked to γ-secretase activity and ß-amyloid precursor protein but is independent of phosphatase and tensin homolog. We show that amyloid precursor protein intracellular domain (AICD) accounts for presenilin-dependent phenotype and upregulates Pink-1 transactivation in cells as well as in vivo in a Forkhead box O3a-dependent manner. Interestingly, the modulation of γ-secretase activity or AICD expression affects Pink-1-related control of mitophagy and mitochondrial dynamics. Finally, we show that parkin acts upstream of presenilins to control Pink-1 promoter transactivation and protein expression. CONCLUSIONS: Overall, we delineate a molecular cascade presenilins-AICD-Forkhead box O3a linking parkin to Pink-1. Our study demonstrates AICD-mediated Pink-1-dependent control of mitochondrial physiology by presenilins. Furthermore, it unravels a parkin-Pink-1 feedback loop controlling mitochondrial physiology that could be disrupted in neurodegenerative conditions.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteína Forkhead Box O3/metabolismo , Hipocampo/metabolismo , Mitocondrias/metabolismo , Presenilinas/metabolismo , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Embrión de Mamíferos , Fibroblastos , Células HEK293 , Humanos , Espacio Intracelular/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA