Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Microbiol ; 100(3): 542-59, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26801962

RESUMEN

Defensins play an important role in plant defense against fungal pathogens. The plant defensin, MtDef4, inhibits growth of the ascomycete fungi, Neurospora crassa and Fusarium graminearum, at micromolar concentrations. We have reported that MtDef4 is transported into the cytoplasm of these fungi and exerts its antifungal activity on intracellular targets. Here, we have investigated whether the antifungal mechanisms of MtDef4 are conserved in these fungi. We show that N. crassa and F. graminearum respond differently to MtDef4 challenge. Membrane permeabilization is required for the antifungal activity of MtDef4 against F. graminearum but not against N. crassa. We find that MtDef4 is targeted to different subcellular compartments in each fungus. Internalization of MtDef4 in N. crassa is energy-dependent and involves endocytosis. By contrast, MtDef4 appears to translocate into F. graminearum autonomously using a partially energy-dependent pathway. MtDef4 has been shown to bind to the phospholipid phosphatidic acid (PA). We provide evidence that the plasma membrane localized phospholipase D, involved in the biosynthesis of PA, is needed for entry of this defensin in N. crassa, but not in F. graminearum. To our knowledge, this is the first example of a defensin which inhibits the growth of two ascomycete fungi via different mechanisms.


Asunto(s)
Antifúngicos/metabolismo , Defensinas/metabolismo , Endocitosis/fisiología , Fusarium/crecimiento & desarrollo , Neurospora crassa/crecimiento & desarrollo , Transporte Biológico Activo/efectos de los fármacos , Transporte Biológico Activo/fisiología , Brefeldino A/farmacología , Permeabilidad de la Membrana Celular/fisiología , Endocitosis/efectos de los fármacos , Filipina/farmacología , Ácidos Fosfatidicos/química , Fosfolipasa D/química , Fosfolipasa D/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Plantas/microbiología , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo
2.
Transgenic Res ; 26(1): 37-49, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27582300

RESUMEN

Rust fungi of the order Pucciniales are destructive pathogens of wheat worldwide. Leaf rust caused by the obligate, biotrophic basidiomycete fungus Puccinia triticina (Pt) is an economically important disease capable of causing up to 50 % yield losses. Historically, resistant wheat cultivars have been used to control leaf rust, but genetic resistance is ephemeral and breaks down with the emergence of new virulent Pt races. There is a need to develop alternative measures for control of leaf rust in wheat. Development of transgenic wheat expressing an antifungal defensin offers a promising approach to complement the endogenous resistance genes within the wheat germplasm for durable resistance to Pt. To that end, two different wheat genotypes, Bobwhite and Xin Chun 9 were transformed with a chimeric gene encoding an apoplast-targeted antifungal plant defensin MtDEF4.2 from Medicago truncatula. Transgenic lines from four independent events were further characterized. Homozygous transgenic wheat lines expressing MtDEF4.2 displayed resistance to Pt race MCPSS relative to the non-transgenic controls in growth chamber bioassays. Histopathological analysis suggested the presence of both pre- and posthaustorial resistance to leaf rust in these transgenic lines. MtDEF4.2 did not, however, affect the root colonization of a beneficial arbuscular mycorrhizal fungus Rhizophagus irregularis. This study demonstrates that the expression of apoplast-targeted plant defensin MtDEF4.2 can provide substantial resistance to an economically important leaf rust disease in transgenic wheat without negatively impacting its symbiotic relationship with the beneficial mycorrhizal fungus.


Asunto(s)
Defensinas/genética , Enfermedades de las Plantas/genética , Hojas de la Planta/genética , Triticum/genética , Basidiomycota/genética , Basidiomycota/patogenicidad , Resistencia a la Enfermedad/genética , Medicago truncatula/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/microbiología , Simbiosis/genética , Triticum/crecimiento & desarrollo , Triticum/microbiología
3.
Pathogens ; 13(1)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38251360

RESUMEN

Plant viruses depend on host cellular factors for their replication and movement. There are cellular proteins that change their localization and/or expression and have a proviral role or antiviral activity and interact with or target viral proteins. Identification of those proteins and their roles during infection is crucial for understanding plant-virus interactions and to design antiviral resistance in crops. Important host proteins have been identified using approaches such as tag-dependent immunoprecipitation or yeast two hybridization that require cloning individual proteins or the entire virus. However, the number of possible interactions between host and viral proteins is immense. Therefore, an alternative method is needed for proteome-wide identification of host proteins involved in host-virus interactions. Here, we present cell fractionation coupled with mass spectrometry as an option to identify protein-protein interactions between viruses and their hosts. This approach involves separating subcellular organelles using differential and/or gradient centrifugation from virus-free and virus-infected cells (1) followed by comparative analysis of the proteomic profiles obtained for each subcellular organelle via mass spectrometry (2). After biological validation, prospect host proteins with proviral or antiviral roles can be subject to fundamental studies in the context of basic biology to shed light on both virus replication and cellular processes. They can also be targeted via gene editing to develop virus-resistant crops.

4.
Mol Plant Pathol ; 24(10): 1347-1356, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37438989

RESUMEN

Gene silencing is a conserved mechanism in eukaryotes that dynamically regulates gene expression. In plants, gene silencing is critical for development and for maintenance of genome integrity. Additionally, it is a critical component of antiviral defence in plants, nematodes, insects, and fungi. To overcome gene silencing, viruses encode effectors that suppress gene silencing. A growing body of evidence shows that gene silencing and suppression of silencing are also used by plants during their interaction with nonviral pathogens such as fungi, oomycetes, and bacteria. Plant-pathogen interactions involve trans-kingdom movement of small RNAs into the pathogens to alter the function of genes required for their development and virulence. In turn, plant-associated pathogenic and nonpathogenic microbes also produce small RNAs that move trans-kingdom into host plants to disrupt pathogen defence through silencing of plant genes. The mechanisms by which these small RNAs move from the microbe to the plant remain poorly understood. In this review, we examine the roles of trans-kingdom small RNAs and silencing suppressors produced by nonviral microbes in inducing and suppressing gene silencing in plants. The emerging model is that gene silencing and suppression of silencing play critical roles in the interactions between plants and their associated nonviral microbes.


Asunto(s)
Silenciador del Gen , Plantas , Plantas/microbiología , Virulencia , Hongos/metabolismo , Antivirales , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Interacciones Huésped-Patógeno/genética
5.
Front Plant Sci ; 11: 56, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117392

RESUMEN

The terms genome engineering, genome editing, and gene editing, refer to modifications (insertions, deletions, substitutions) in the genome of a living organism. The most widely used approach to genome editing nowadays is based on Clustered Regularly Interspaced Short Palindromic Repeats and associated protein 9 (CRISPR-Cas9). In prokaryotes, CRISPR-Cas9 is an adaptive immune system that naturally protects cells from DNA virus infections. CRISPR-Cas9 has been modified to create a versatile genome editing technology that has a wide diversity of applications in medicine, agriculture, and basic studies of gene functions. CRISPR-Cas9 has been used in a growing number of monocot and dicot plant species to enhance yield, quality, and nutritional value, to introduce or enhance tolerance to biotic and abiotic stresses, among other applications. Although biosafety concerns remain, genome editing is a promising technology with potential to contribute to food production for the benefit of the growing human population. Here, we review the principles, current advances and applications of CRISPR-Cas9-based gene editing in crop improvement. We also address biosafety concerns and show that humans have been exposed to Cas9 protein homologues long before the use of CRISPR-Cas9 in genome editing.

6.
J Vis Exp ; (130)2017 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-29364205

RESUMEN

Small cysteine-rich defensins are one of the largest groups of host defense peptides present in all plants. Many plant defensins exhibit potent in vitro antifungal activity against a broad-spectrum of fungal pathogens and therefore have the potential to be used as antifungal agents in transgenic crops. In order to harness the full potential of plant defensins for diseases control, it is crucial to elucidate their mechanisms of action (MOA). With the advent of advanced microscopy techniques, live-cell imaging has become a powerful tool for understanding the dynamics of the antifungal MOA of plant defensins. Here, a confocal microscopy based live-cell imaging method is described using two fluorescently labeled plant defensins (MtDef4 and MtDef5) in combination with vital fluorescent dyes. This technique enables real-time visualization and analysis of the dynamic events of MtDef4 and MtDef5 internalization into fungal cells. Importantly, this assay generates a wealth of information including internalization kinetics, mode of entry and subcellular localization of these peptides. Along with other cell biological tools, these methods have provided critical insights into the dynamics and complexity of the MOA of these peptides. These tools can also be used to compare the MOA of these peptides against different fungi.


Asunto(s)
Defensinas/metabolismo , Fusarium/metabolismo , Neurospora crassa/metabolismo , Proteínas de Plantas/metabolismo , Plantas/microbiología , Microscopía Confocal/métodos , Plantas/metabolismo
7.
PLoS One ; 8(12): e82485, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24324798

RESUMEN

MtDef4 is a 47-amino acid cysteine-rich evolutionary conserved defensin from a model legume Medicago truncatula. It is an apoplast-localized plant defense protein that inhibits the growth of the ascomycetous fungal pathogen Fusarium graminearum in vitro at micromolar concentrations. Little is known about the mechanisms by which MtDef4 mediates its antifungal activity. In this study, we show that MtDef4 rapidly permeabilizes fungal plasma membrane and is internalized by the fungal cells where it accumulates in the cytoplasm. Furthermore, analysis of the structure of MtDef4 reveals the presence of a positively charged γ-core motif composed of ß2 and ß3 strands connected by a positively charged RGFRRR loop. Replacement of the RGFRRR sequence with AAAARR or RGFRAA abolishes the ability of MtDef4 to enter fungal cells, suggesting that the RGFRRR loop is a translocation signal required for the internalization of the protein. MtDef4 binds to phosphatidic acid (PA), a precursor for the biosynthesis of membrane phospholipids and a signaling lipid known to recruit cytosolic proteins to membranes. Amino acid substitutions in the RGFRRR sequence which abolish the ability of MtDef4 to enter fungal cells also impair its ability to bind PA. These findings suggest that MtDef4 is a novel antifungal plant defensin capable of entering into fungal cells and affecting intracellular targets and that these processes are mediated by the highly conserved cationic RGFRRR loop via its interaction with PA.


Asunto(s)
Antifúngicos/química , Antifúngicos/metabolismo , Defensinas/química , Defensinas/metabolismo , Medicago truncatula/química , Medicago truncatula/metabolismo , Ácidos Fosfatidicos/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Aminoácidos/química , Antifúngicos/farmacología , Defensinas/farmacología , Fusarium/efectos de los fármacos , Fusarium/fisiología , Fusarium/ultraestructura , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacología , Unión Proteica , Conformación Proteica , Alineación de Secuencia , Electricidad Estática
8.
Plant J ; 39(4): 587-98, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15272876

RESUMEN

While the biology of nitrogen-fixing root nodules has been extensively studied, little is known about the evolutionary events that predisposed legume plants to form symbiosis with rhizobia. We have studied the presence and the expression of two pectic gene families in Medicago, polygalacturonases (PGs) and pectin methyl esterases (PMEs) during the early steps of the Sinorhizobium meliloti-Medicago interaction and compared them with related pollen-specific genes. First, we have compared the expression of MsPG3, a PG gene specifically expressed during the symbiotic interaction, with the expression of MsPG11, a highly homologous pollen-specific gene, using promoter-gus fusions in transgenic M. truncatula and tobacco plants. These results demonstrated that the symbiotic promoter functions as a pollen-specific promoter in the non-legume host. Second, we have identified the presence of a gene family of at least eight differentially expressed PMEs in Medicago. One subfamily is represented by one symbiotic gene (MtPER) and two pollen-expressed genes (MtPEF1 and MtPEF2) that are clustered in the M. truncatula genome. The promoter-gus studies presented in this work and the homology between plant PGs, together with the analysis of the PME locus structure and MtPER expression studies, suggest that the symbiotic MsPG3 and MtPER could have as ancestors pollen-expressed genes involved in polar tip growth processes during pollen tube elongation. Moreover, they could have been recruited after gene duplication in the symbiotic interaction to facilitate polar tip growth during infection thread formation.


Asunto(s)
Genes de Plantas , Medicago/genética , Simbiosis , Hidrolasas de Éster Carboxílico/genética , Mapeo Cromosómico , Flores/genética , Filogenia , Plantas Modificadas Genéticamente , Poligalacturonasa/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sinorhizobium meliloti/genética , Nicotiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA