Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(52): e2306160120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109545

RESUMEN

Epulopiscium spp. are the largest known heterotrophic bacteria; a large cigar-shaped individual is a million times the volume of Escherichia coli. To better understand the metabolic potential and relationship of Epulopiscium sp. type B with its host Naso tonganus, we generated a high-quality draft genome from a population of cells taken from a single fish. We propose the name Candidatus Epulopiscium viviparus to describe populations of this best-characterized Epulopiscium species. Metabolic reconstruction reveals more than 5% of the genome codes for carbohydrate active enzymes, which likely degrade recalcitrant host-diet algal polysaccharides into substrates that may be fermented to acetate, the most abundant short-chain fatty acid in the intestinal tract. Moreover, transcriptome analyses and the concentration of sodium ions in the host intestinal tract suggest that the use of a sodium motive force (SMF) to drive ATP synthesis and flagellar rotation is integral to symbiont metabolism and cellular biology. In natural populations, genes encoding both F-type and V-type ATPases and SMF generation via oxaloacetate decarboxylation are among the most highly expressed, suggesting that ATPases synthesize ATP and balance ion concentrations across the cell membrane. High expression of these and other integral membrane proteins may allow for the growth of its extensive intracellular membrane system. Further, complementary metabolism between microbe and host is implied with the potential provision of nitrogen and B vitamins to reinforce this nutritional symbiosis. The few features shared by all bacterial behemoths include extreme polyploidy, polyphosphate synthesis, and thus far, they have all resisted cultivation in the lab.


Asunto(s)
Sodio , ATPasas de Translocación de Protón Vacuolares , Animales , Sodio/metabolismo , Bacterias/metabolismo , Clostridiales/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Adenosina Trifosfato/metabolismo
2.
Environ Microbiol ; 20(2): 492-505, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28967193

RESUMEN

Zooplankton and microbes play a key role in the ocean's biological cycles by releasing and consuming copious amounts of particulate and dissolved organic matter. Additionally, zooplankton provide a complex microhabitat rich in organic and inorganic nutrients in which bacteria thrive. In this study, we assessed the phylogenetic composition and metabolic potential of microbial communities associated with crustacean zooplankton species collected in the North Atlantic. Using Illumina sequencing of the 16S rRNA gene, we found significant differences between the microbial communities associated with zooplankton and those inhabiting the surrounding seawater. Metagenomic analysis of the zooplankton-associated microbial community revealed a highly specialized bacterial community able to exploit zooplankton as microhabitat and thus, mediating biogeochemical processes generally underrepresented in the open ocean. The zooplankton-associated bacterial community is able to colonize the zooplankton's internal and external surfaces using a large set of adhesion mechanisms and to metabolize complex organic compounds released or exuded by the zooplankton such as chitin, taurine and other complex molecules. Moreover, the high number of genes involved in iron and phosphorus metabolisms in the zooplankton-associated microbiome suggests that this zooplankton-associated bacterial community mediates specific biogeochemical processes (through the proliferation of specific taxa) that are generally underrepresented in the ambient waters.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Metagenoma , Zooplancton/microbiología , Animales , Océano Atlántico , Bacterias/clasificación , Bacterias/aislamiento & purificación , Metagenómica , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología
3.
Coral Reefs ; 36(2): 447-452, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28579915

RESUMEN

Mesophotic coral ecosystems (MCEs) are generally poorly studied, and our knowledge of lower MCEs (below 60 m depth) is largely limited to visual surveys. Here, we provide a first detailed assessment of the prokaryotic community associated with scleractinian corals over a depth gradient to the lower mesophotic realm (15-85 m). Specimens of three Caribbean coral species exhibiting differences in their depth distribution ranges (Agaricia grahamae, Madracis pharensis and Stephanocoenia intersepta) were collected with a manned submersible on the island of Curaçao, and their prokaryotic communities assessed using 16S rRNA gene sequencing analysis. Corals with narrower depth distribution ranges (depth-specialists) were associated with a stable prokaryotic community, whereas corals with a broader niche range (depth-generalists) revealed a higher variability in their prokaryotic community. The observed depth effects match previously described patterns in Symbiodinium depth zonation. This highlights the contribution of structured microbial communities over depth to the coral's ability to colonize a broader depth range.

4.
ISME Commun ; 3(1): 78, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596312

RESUMEN

Lytic phages can be potent and selective inhibitors of microbial growth and can have profound impacts on microbiome composition and function. However, there is uncertainty about the biogeochemical conditions under which phage predation modulates microbial ecosystem function, particularly in terrestrial systems. Ionic strength is critical for infection of bacteria by many phages, but quantitative data is limited on the ion thresholds for phage infection that can be compared with environmental ion concentrations. Similarly, while carbon composition varies in the environment, we do not know how this variability influences the impact of phage predation on microbiome function. Here, we measured the half-maximal effective concentrations (EC50) of 80 different inorganic ions for the infection of E. coli with two canonical dsDNA and ssRNA phages, T4 and MS2, respectively. Many alkaline earth metals and alkali metals enabled lytic infection but the ionic strength thresholds varied for different ions between phages. Additionally, using a freshwater nitrate-reducing microbiome, we found that the ability of lytic phages to influence nitrate reduction end-products depended upon the carbon source as well as ionic strength. For all phage:host pairs, the ion EC50s for phage infection exceeded the ion concentrations found in many terrestrial freshwater systems. Thus, our findings support a model where phages most influence terrestrial microbial functional ecology in hot spots and hot moments such as metazoan guts, drought influenced soils, or biofilms where ion concentration is locally or transiently elevated and nutrients are available to support the growth of specific phage hosts.

5.
Environ Microbiol ; 14(6): 1584-95, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22672589

RESUMEN

In marine invertebrates that acquire their symbionts from the environment, these are generally only taken up during early developmental stages. In the symbiosis between lucinid clams and their intracellular sulfur-oxidizing bacteria, it has been shown that the juveniles acquire their symbionts from an environmental stock of free-living symbiont forms, but it is not known if adult clams are still competent to take up symbiotic bacteria from the environment. In this study, we investigated symbiont acquisition in adult specimens of the lucinid clam Codakia orbiculata, using transmission electron microscopy, fluorescence in situ hybridization, immunohistochemistry and PCR. We show here that adults that had no detectable symbionts after starvation in aquaria for 6 months, rapidly reacquired symbionts within days after being returned to their natural environments in the field. Control specimens that were starved and then exposed to seawater aquaria with sulfide did not reacquire symbionts. This indicates that the reacquisition of symbionts in the starved clams returned to the field was not caused by high division rates of a small pool of remaining symbionts that we were not able to detect with the methods used here. Immunohistochemistry with an antibody against actin, a protein involved in the phagocytosis of intracellular bacteria, showed that actin was expressed at the apical ends of the gill cells that took up symbionts, providing further evidence that the symbionts were acquired from the environment. Interestingly, actin expression was also observed in symbiont-containing cells of untreated lucinids freshly collected from the environment, indicating that symbiont acquisition from the environment occurs continuously in these clams throughout their lifetime.


Asunto(s)
Bivalvos/microbiología , Bivalvos/fisiología , Simbiosis , Adolescente , Adulto , Animales , Bacterias/metabolismo , Bivalvos/ultraestructura , Branquias/microbiología , Humanos , Hibridación Fluorescente in Situ , Estadios del Ciclo de Vida , Masculino , Microscopía Electrónica de Transmisión , Agua de Mar/química , Agua de Mar/microbiología , Sulfuros/metabolismo
6.
Science ; 376(6600): 1453-1458, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35737788

RESUMEN

Cells of most bacterial species are around 2 micrometers in length, with some of the largest specimens reaching 750 micrometers. Using fluorescence, x-ray, and electron microscopy in conjunction with genome sequencing, we characterized Candidatus (Ca.) Thiomargarita magnifica, a bacterium that has an average cell length greater than 9000 micrometers and is visible to the naked eye. These cells grow orders of magnitude over theoretical limits for bacterial cell size, display unprecedented polyploidy of more than half a million copies of a very large genome, and undergo a dimorphic life cycle with asymmetric segregation of chromosomes into daughter cells. These features, along with compartmentalization of genomic material and ribosomes in translationally active organelles bound by bioenergetic membranes, indicate gain of complexity in the Thiomargarita lineage and challenge traditional concepts of bacterial cells.


Asunto(s)
ADN Bacteriano , Orgánulos , Thiotrichaceae , Variaciones en el Número de Copia de ADN , ADN Bacteriano/análisis , ADN Bacteriano/metabolismo , Estadios del Ciclo de Vida , Orgánulos/química , Orgánulos/metabolismo , Poliploidía , Thiotrichaceae/genética , Thiotrichaceae/crecimiento & desarrollo , Thiotrichaceae/ultraestructura
7.
ISME J ; 10(5): 1051-63, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26528837

RESUMEN

Ammonia-oxidizing Archaea (AOA) are ubiquitous throughout the oceanic water column; however, our knowledge on their physiological and ecological diversity in different oceanic regions is rather limited. Here, we report the cultivation and characterization of two novel Nitrosopumilus strains, originating from coastal surface waters of the Northern Adriatic Sea. The combined physiological and genomic information revealed that each strain exhibits different metabolic and functional traits, potentially reflecting contrasting life modes. Strain NF5 contains many chemotaxis-related genes and is able to express archaella, suggesting that it can sense and actively seek favorable microenvironments such as nutrient-rich particles. In contrast, strain D3C is non-motile and shows higher versatility in substrate utilization, being able to use urea as an alternative substrate in addition to ammonia. Furthermore, it encodes a divergent, second copy of the AmoB subunit of the key enzyme ammonia monooxygenase, which might have an additional catalytic function and suggests further metabolic versatility. However, the role of this gene requires further investigation. Our results provide evidence for functional diversity and metabolic versatility among phylogenetically closely related thaumarchaeal strains, and point toward adaptations to free-living versus particle-associated life styles and possible niche differentiation among AOA in marine ecosystems.


Asunto(s)
Archaea/fisiología , Agua de Mar/microbiología , Amoníaco/metabolismo , Archaea/clasificación , Archaea/genética , Carbono/metabolismo , Ecosistema , Metabolismo Energético , Genómica , Mar del Norte , Oxidación-Reducción , Oxidorreductasas/genética , Filogenia
8.
FEMS Microbiol Ecol ; 89(3): 646-58, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24939560

RESUMEN

Until now, the culture of sulphur-oxidizing bacterial symbionts associated with marine invertebrates remains impossible. Therefore, few studies focused on symbiont's physiology under stress conditions. In this study, we carried out a comparative experiment based on two different species of lucinid bivalves (Codakia orbiculata and Lucina pensylvanica) under comparable stress factors. The bivalves were starved for 6 months in sulphide-free filtered seawater. For C. orbiculata only, starved individuals were then put back to the field, in natural sediment. We used in situ hybridization, flow cytometry and X-ray fluorescence to characterize the symbiont population hosted in the gills of both species. In L. pensylvanica, no decrease in symbiont abundance was observed throughout the starvation experiment, whereas elemental sulphur slowly decreased to zero after 3 months of starvation. Conversely, in C. orbiculata, symbiont abundance within bacteriocytes decreased rapidly and sulphur from symbionts disappeared during the first weeks of the experiment. The modifications of the cellular characteristics (SSC--relative cell size and FL1--genomic content) of the symbiotic populations along starvation were not comparable between species. Return to the sediment of starved C. orbiculata individuals led to a rapid (2-4 weeks) recovery of symbiotic cellular characteristics, comparable with unstressed symbionts. These results suggest that endosymbiotic population regulation is host-species-dependent in lucinids.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Bivalvos/microbiología , Simbiosis , Animales , Bacterias/genética , Branquias/química , Branquias/microbiología , Azufre/análisis
9.
Microsc Res Tech ; 75(8): 1136-46, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22438018

RESUMEN

The shallow-water bivalve Codakia orbiculata which harbors gill-endosymbiotic sulfur-oxidizing γ-proteobacteria can lose and acquire its endosymbionts throughout its life. Long-term starvation and recolonization experiments led to changes in the organization of cells in the lateral zone of gill filaments. This plasticity is linked to the presence or absence of gill-endosymbionts. Herein, we propose that this reorganization can be explained by three hypotheses: (a) a variation in the number of bacteriocytes and granule cells due to proliferation or apoptosis processes, (b) a variation of the volume of these two cell types without modification in the number, and (c) a combination of both number and cell volume variation. To test these hypotheses, we analyzed cell reorganization in terms of proliferation and apoptosis in adults submitted to starvation and returned to the field using catalyzed reporter deposition fluorescence in situ hybridization, immunohistochemistry, and structural analyses. We observed that cell and tissue reorganization in gills filaments is due to a variation in cell relative abundance that maybe associated with a variation in cell apparent volume and depends on the environment. In fact, bacteriocytes mostly multiply in freshly collected and newly recolonized individuals, and excess bacteriocytes are eliminated in later recolonization stages. We highlight that host tissue regeneration in gill filaments of this symbiotic bivalve can occur by both replication of existing cells and division of undifferentiated cells localized in tissular bridges, which might be a tissue-specific multipotent stem cell zone.


Asunto(s)
Apoptosis , Bivalvos/microbiología , Proliferación Celular , Gammaproteobacteria/crecimiento & desarrollo , Branquias/microbiología , Regeneración , Simbiosis , Animales , Bivalvos/fisiología , Recuento de Células , División Celular , Tamaño de la Célula , Privación de Alimentos , Branquias/fisiología , Branquias/ultraestructura , Inmunohistoquímica , Hibridación Fluorescente in Situ
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA