Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Mol Divers ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727994

RESUMEN

Herein, a novel series of naphthamide derivatives has been rationally developed, synthesized, and evaluated for their inhibitory activity against monoamine oxidase (MAO) and cholinesterase (ChE) enzymes. Compared to the reported naphthalene-based hit IV, the new naphthamide hybrids 2a, 2c, 2g and 2h exhibited promising MAO inhibitory activities; with an IC50 value of 0.294 µM, compound 2c most potently inhibited MAO-A, while compound 2g exhibited most potent MAO-B inhibitory activity with an IC50 value of 0.519 µM. Compounds 2c and 2g showed selectivity index (SI) values of 6.02 for MAO-A and 2.94 for MAO-B, respectively. On the other hand, most compounds showed weak inhibitory activity against ChEs except 2a and 2h over butyrylcholinesterase (BChE). The most potent compounds 2c and 2g were found to be competitive and reversible MAO inhibitors based on kinetic and reversibility studies. Plausible interpretations of the observed biological effects were provided through molecular docking simulations. The drug-likeness predicted by SwissADME and Osiris property explorer showed that the most potent compounds (2a, 2c, 2g, and 2h) obey Lipinski's rule of five. Accordingly, in the context of neurological disorders, hybrids 2c and 2g may contribute to the identification of safe and potent therapeutic approaches in the near future.

2.
Arch Pharm (Weinheim) ; : e2400069, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240035

RESUMEN

Sulfonamides are promising classical carbonic anhydrase (CA; EC 4.2.1.1) inhibitors, being used for several medical purposes such as diuretics, anticonvulsants, topically acting antiglaucoma agents, for antiobesity and anticancer therapies. Herein, a series of chalcone-based benzenesulfonamides (3a‒m) was synthesized and assessed for its inhibitory activity against a panel of four human carbonic anhydrases (hCA isoforms I, II, IX, and XII). Most compounds displayed single- to double-digit nanomolar inhibition constants (Kis), with some derivatives being more potent and/or selective than the standard drug acetazolamide (AAZ). Among the synthesized compounds, 3g compound demonstrated the highest inhibitory activity against the hCA II isoform (Ki = 2.5 nM) with 30-, 9-, and 11-fold selectivity for hCA II over the I, IX, and XII isoforms, respectively. Structure-activity relationships for different substitution patterns were analyzed. Additionally, a molecular docking study showed that compound 3g bound to hCA II by coordinating with the zinc ion through the deprotonated benzenesulfonamide moiety, in addition to a hydrogen bond formed between an oxygen of the sulfonamide moiety and Thr199. Moreover, the chalcone core participated in van der Waals interactions with some active site residues, such as Ile91, Val121, and Leu198. Consequently, this report introduces a successful approach toward identifying compound 3g as a highly potent and selective chalcone-based benzenesulfonamide inhibitor of hCA II worthy of further investigation.

3.
J Enzyme Inhib Med Chem ; 38(1): 2242714, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37592917

RESUMEN

A new wave of dual Topo I/II inhibitors was designed and synthesised via the hybridisation of spirooxindoles and pyrimidines. In situ selenium nanoparticles (SeNPs) for some derivatives were synthesised. The targets and the SeNP derivatives were examined for their cytotoxicity towards five cancer cell lines. The inhibitory potencies of the best members against Topo I and Topo II were also assayed besides their DNA intercalation abilities. Compound 7d NPs exhibited the best inhibition against Topo I and Topo II enzymes with IC50 of 0.042 and 1.172 µM, respectively. The ability of compound 7d NPs to arrest the cell cycle and induce apoptosis was investigated. It arrested the cell cycle in the A549 cell at the S phase and prompted apoptosis by 41.02% vs. 23.81% in the control. In silico studies were then performed to study the possible binding interactions between the designed members and the target proteins.


A new wave of dual Topo I/II inhibitors was designed and synthesised via the hybridisation of spirooxindoles and pyrimidines.In situ selenium nanoparticles (SeNPs) for some derivatives were synthesised.Cytotoxicity, Topo I and Topo II inhibitory assays, and DNA intercalation abilities were evaluated.Compound 7d NPs showed the best Topo I and Topo II inhibition.Cell cycle arrest, apoptosis induction, and molecular docking studies were performed.


Asunto(s)
Nanopartículas , Selenio , Selenio/farmacología , Sustancias Intercalantes/farmacología , Ciclo Celular , ADN-Topoisomerasas de Tipo II , ADN
4.
J Enzyme Inhib Med Chem ; 38(1): 2202358, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37096560

RESUMEN

Epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) protein tyrosine kinases co-expressed in various cancers such as ovarian, breast, colon, and prostate subtypes. Herein, new TAK-285 derivatives (9a-h) were synthesised, characterised, and biologically evaluated as dual EGFR/HER2 inhibitors. Compound 9f exhibited IC50 values of 2.3 nM over EGFR and 234 nM over HER2, which is 38-fold of staurosporine and 10-fold of TAK-285 over EGFR. Compound 9f also showed high selectivity profile when tested over a small kinase panel. Compounds 9a-h showed IC50 values in the range of 1.0-7.3 nM and 0.8-2.8 nM against PC3 and 22RV1 prostate carcinoma cell lines, respectively. Cell cycle analysis, apoptotic induction, molecular docking, dynamics, and MM-GBSA studies confirmed the plausible mechanism(s) of compound 9f as a potent EGFR/HER2 dual inhibitor with an effective antiproliferative action against prostate carcinoma.


Asunto(s)
Antineoplásicos , Carcinoma , Neoplasias de la Próstata , Masculino , Humanos , Simulación del Acoplamiento Molecular , Próstata , Línea Celular Tumoral , Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proliferación Celular , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Receptores ErbB
5.
J Enzyme Inhib Med Chem ; 38(1): 2171029, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36701269

RESUMEN

Topoisomerase II (TOP-2) is a promising molecular target for cancer therapy. Numerous antibiotics could interact with biologically relevant macromolecules and provoke antitumor potential. Herein, molecular docking studies were used to investigate the binding interactions of 138 antibiotics against the human topoisomerase II-DNA complex. Followed by the MD simulations for 200 ns and MM-GBSA calculations. On the other hand, the antitumor activities of the most promising candidates were investigated against three cancer cell lines using doxorubicin (DOX) as a reference drug. Notably, spiramycin (SP) and clarithromycin (CL) showed promising anticancer potentials on the MCF-7 cell line. Moreover, azithromycin (AZ) and CL exhibited good anticancer potentials against the HCT-116 cell line. Finally, the TOP-2 enzyme inhibition assay was carried out to confirm the proposed rationale. Briefly, potent TOP-2 inhibitory potentials were recorded for erythromycin (ER) and roxithromycin (RO). Additionally, a SAR study opened eyes to promising anticancer pharmacophores encountered by these antibiotics.HighlightsMolecular docking studies of 139 antibiotics against the topoisomerase II-DNA complex.SP, RO, AZ, CL, and ER were the most promising and commercially available candidates.Molecular dynamics simulations for 200 ns for the most promising five complexes.MM-GBSA calculations for the frontier five complexes.SP and CL showed promising anticancer potentials on the MCF-7 cell line, besides, AZ and CL exhibited good anticancer potentials against the HCT-116 cell line.Potent TOP-2 inhibitory potentials were recorded for ER and RO.


Asunto(s)
Antineoplásicos , Inhibidores de Topoisomerasa II , Humanos , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Sustancias Intercalantes/farmacología , Antibacterianos/farmacología , Relación Estructura-Actividad , Simulación de Dinámica Molecular , Línea Celular Tumoral , ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Ensayos de Selección de Medicamentos Antitumorales
6.
J Enzyme Inhib Med Chem ; 38(1): 2205043, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37165800

RESUMEN

Topoisomerases II are ubiquitous enzymes with significant genotoxic effects in many critical DNA processes. Additionally, epidermal growth factor receptor (EGFR) plays pivotal role in tumour growth and angiogenesis. A novel series of naphtho[2',3':4,5]thiazolo[3,2-a]pyrimidine hybrids have been designed, synthesised and evaluated for their topo IIα/EGFR inhibitory and apoptotic inducer activities. Cytotoxicity of the synthesised hybrids was evaluated against MCF-7, A549 and HCT-116 cell lines. Of the synthesised hybrids, 6i, 6a and 6c experienced superior cytotoxic activity compared to doxorubicin and erlotinib against the tested cancer cells. The molecular mechanism of these hybrids revealed their ability to successfully inhibit topo IIα and EGFR activities in micromolar concentration and may serve as topo II catalytic inhibitor. Moreover, these hybrids significantly arrested cell cycle at G2/M phase together with increased p53, caspae-7, caspase-9 levels and Bax/Bcl-2 ratio. The synthesised hybrids showed efficient binding pattern in molecular docking study and have acceptable drug likeness characters.


Asunto(s)
Antineoplásicos , Simulación del Acoplamiento Molecular , Antineoplásicos/química , ADN-Topoisomerasas de Tipo II/metabolismo , Receptores ErbB/metabolismo , Apoptosis , Pirimidinas/farmacología , Inhibidores de Topoisomerasa II/química , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Relación Estructura-Actividad , Línea Celular Tumoral
7.
Int J Mol Sci ; 24(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37298401

RESUMEN

The proto-oncogenic protein, c-KIT, plays a crucial role in regulating cellular transformation and differentiation processes, such as proliferation, survival, adhesion, and chemotaxis. The overexpression of, and mutations, in c-KIT can lead to its dysregulation and promote various human cancers, particularly gastrointestinal stromal tumors (GISTs); approximately 80-85% of cases are associated with oncogenic mutations in the KIT gene. Inhibition of c-KIT has emerged as a promising therapeutic target for GISTs. However, the currently approved drugs are associated with resistance and significant side effects, highlighting the urgent need to develop highly selective c-KIT inhibitors that are not affected by these mutations for GISTs. Herein, the recent research efforts in medicinal chemistry aimed at developing potent small-molecule c-KIT inhibitors with high kinase selectivity for GISTs are discussed from a structure-activity relationship perspective. Moreover, the synthetic pathways, pharmacokinetic properties, and binding patterns of the inhibitors are also discussed to facilitate future development of more potent and pharmacokinetically stable small-molecule c-KIT inhibitors.


Asunto(s)
Neoplasias Gastrointestinales , Tumores del Estroma Gastrointestinal , Humanos , Tumores del Estroma Gastrointestinal/genética , Inhibidores Enzimáticos/farmacología , Proteínas Proto-Oncogénicas c-kit/genética , Relación Estructura-Actividad , Oncogenes , Mutación , Neoplasias Gastrointestinales/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética
8.
Inflammopharmacology ; 31(6): 2857-2883, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37950803

RESUMEN

Chronic inflammation is a common underlying factor in many major diseases, including heart disease, diabetes, cancer, and autoimmune disorders, and is responsible for up to 60% of all deaths worldwide. Metformin, statins, and corticosteroids, and NSAIDs (non-steroidal anti-inflammatory drugs) are often given as anti-inflammatory pharmaceuticals, however, often have even more debilitating side effects than the illness itself. The natural product-based therapy of inflammation-related diseases has no adverse effects and good beneficial results compared to substitute conventional anti-inflammatory medications. In this review article, we provide a concise overview of present pharmacological treatments, the pathophysiology of inflammation, and the signaling pathways that underlie it. In addition, we focus on the most promising natural products identified as potential anti-inflammatory therapeutic agents. Moreover, preclinical studies and clinical trials evaluating the efficacy of natural products as anti-inflammatory therapeutic agents and their pragmatic applications with promising outcomes are reviewed. In addition, the safety, side effects and technical barriers of natural products are discussed. Furthermore, we also summarized the latest technological advances in the discovery and scientific development of natural products-based medicine.


Asunto(s)
Enfermedades Autoinmunes , Productos Biológicos , Humanos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Enfermedades Autoinmunes/tratamiento farmacológico
9.
J Enzyme Inhib Med Chem ; 37(1): 994-1004, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35350942

RESUMEN

Human carbonic anhydrase inhibitors (hCAIs) are a key therapeutic class with a multitude of novel applications such as anticonvulsants, topically acting antiglaucoma, and anticancer drugs. Herein, a new series of 4-anilinoquinazoline-based benzenesulfonamides were designed, synthesised, and biologically assessed as potential hCAIs. The target compounds are based on the well-tolerated kinase scaffold (4-anilinoquinazoline). Compounds 3a (89.4 nM), 4e (91.2 nM), and 4f (60.9 nM) exhibited 2.8, 2.7, and 4 folds higher potency against hCA I when compared to the standard (AAZ, V), respectively. A single digit nanomolar activity was elicited by compounds 3a (8.7 nM), 4a (2.4 nM), and 4e (4.6 nM) with 1.4, 5, and 2.6 folds of potency compared to AAZ (12.1 nM) against isoform hCA II, respectively. Structure-activity relationship (SAR) and molecular docking studies validated our design approach that revealed highly potent hCAIs.


Asunto(s)
Anhidrasa Carbónica I , Anhidrasas Carbónicas , Compuestos de Anilina , Humanos , Simulación del Acoplamiento Molecular , Isoformas de Proteínas , Quinazolinas
10.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269684

RESUMEN

In recent decades, human carbonic anhydrase inhibitors (hCAIs) have emerged as an important therapeutic class with various applications including antiglaucoma, anticonvulsants, and anticancer agents. Herein, a novel series of indole-based benzenesulfonamides were designed, synthesized, and biologically evaluated as potential hCAIs. A regioisomerism of the sulfonamide moiety was carried out to afford a total of fifteen indole-based benzenesulfonamides possessing different amide linkers that enable the ligands to be flexible and develop potential H-bond interaction(s) with the target protein. The activity of the synthesized compounds was evaluated against four hCA isoforms (I, II, IX and, XII). Compounds 2b, 2c, 2d, 2f, 2h and 2o exhibited potent and selective profiles over the hCA II isoform with Ki values of 7.3, 9.0, 7.1, 16.0, 8.6 and 7.5 nM, respectively. Among all, compound 2a demonstrated the most potent inhibition against the hCA II isoform with an inhibitory constant (Ki) of 5.9 nM, with 13-, 34-, and 9-fold selectivity for hCA II over I, IX and XII isoforms, respectively. Structure-activity relationship data attained for various substitutions were rationalized. Furthermore, a molecular docking study gave insights into both inhibitory activity and selectivity of the target compounds. Accordingly, this report presents a successful scaffold hoping approach that reveals compound 2a as a highly potent and selective indole-based hCA II inhibitor worthy of further investigation.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Anhidrasas Carbónicas , Anhidrasa Carbónica II/metabolismo , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/química , Anhidrasas Carbónicas/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Indoles , Isoenzimas/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/química
11.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36077298

RESUMEN

Pharmacological inhibition of the enzyme activity targeting carbonic anhydrases (CAs) demonstrated antiglaucoma and anticancer effects through pH control. Recently, we reported a series of indole-based benzenesulfonamides as potent CA inhibitors. The present study aimed to evaluate the antitumor effects of these compounds against various cancer cell lines, including breast cancer (MDA-MB-231, MCF-7, and SK-BR-3), lung cancer (A549), and pancreatic cancer (Panc1) cells. Overall, more potent cytotoxicity was observed on MCF-7 and SK-BR-3 cells than on lung or pancreatic cancer cells. Among the 15 compounds tested, A6 and A15 exhibited potent cytotoxic and antimigratory activities against MCF-7 and SK-BR-3 cells in the CoCl2-induced hypoxic condition. While A6 and A15 markedly reduced the viability of control siRNA-treated cells, these compounds could not significantly reduce the viability of CA IX-knockdown cells, suggesting the role of CA IX in their anticancer activities. To assess whether these compounds exerted synergism with a conventional anticancer drug doxorubicin (DOX), the cytotoxic effects of A6 or A15 combined with DOX were analyzed using Chou-Talalay and Bliss independence methods. Our data revealed that both A6 and A15 significantly enhanced the anticancer activity of DOX. Among the tested pairs, the combination of DOX with A15 showed the strongest synergism on SK-BR-3 cells. Moreover, this combination further attenuated cell migration compared to the respective drug. Collectively, our results demonstrated that A6 and A15 suppressed tumor growth and cell migration of MCF-7 and SK-BR-3 cells through inhibition of CA IX, and the combination of these compounds with DOX exhibited synergistic cytotoxic effects on these breast cancer cells. Therefore, A6 and A15 may serve as potential anticancer agents alone or in combination with DOX against breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Neoplasias Pancreáticas , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular , Doxorrubicina/química , Sinergismo Farmacológico , Femenino , Humanos , Indoles/farmacología , Indoles/uso terapéutico , Células MCF-7 , Neoplasias Pancreáticas/tratamiento farmacológico
12.
Bioorg Chem ; 115: 105233, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34390968

RESUMEN

Up to date, the current clinical practice employs only symptomatic treatments for management of Parkinson's disease (PD) but unable to stop disease progression. The discovery of new chemical entities endowed with potent and selective human monoamine oxidase B (hMAO-B) inhibitory activity is a clinically relevant subject. Herein, a structural optimization strategy for safinamide (a well-known second generation hMAO-B inhibitor) afforded a series of thirty-six safinamide-derived new analogs (4aa-bj). Most compounds showed promising inhibitory activities against hMAO-B (>70% inhibition at a single dose concentration of 10 µM), with no apparent effect on hMAO-A at 100 µM. Moreover, while six compounds (4ak, 4as, 4az, 4be, 4bg, and 4bi) exhibited potent double-digit nanomolar activities over hMAO-B with IC50 values of 29.5, 42.2, 22.3, 18.8, 42.2, and 33.9 nM, respectively, three derivatives (4aq, 4at, and 4bf), possessing the same carboxamide moiety (2-pyrazinyl), showed the most potent single-digit nanomolar activities (IC50 = 9.7, 5.1, and 3.9 nM, respectively). Compound 4bf revealed an excellent selectivity index (SI > 25641) with a 29-fold increase compared to safinamide (SI > 892). A structure activity relationship along with molecular docking simulations provided insights into enzyme - inhibitor interactions and a rational for the observed activity. In an in vivo MPTP-induced mouse model of PD, oral administration of compound 4bf significantly protected nigrostriatal dopaminergic neurons as revealed by tyrosine hydroxylase staining and prevented MPTP-induced Parkinsonism as revealed by motor behavioral assays. Accordingly, we present compound 4bf as a novel, highly potent, and selective hMAO-B inhibitor with an effective therapeutic profile for relieving PD.


Asunto(s)
Alanina/análogos & derivados , Bencilaminas/farmacología , Descubrimiento de Drogas , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Alanina/síntesis química , Alanina/química , Alanina/farmacología , Bencilaminas/síntesis química , Bencilaminas/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Enfermedad de Parkinson/metabolismo , Relación Estructura-Actividad
13.
Bioorg Chem ; 116: 105352, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34562673

RESUMEN

Since there is no disease-modifying treatment discovered yet for Parkinson's disease (PD), there is still a vital need to develop novel selective monoamine oxidase B (MAO-B) inhibitors as promising therapeutically active candidates for PD patients. Herein, we report the design, synthesis, and full characterization of new twenty-six indole derivatives as potential human MAO-B (hMAO-B) selective inhibitors. Six compounds (2i, 3b-e, and 5) exhibited low micromolar to nanomolar inhibitory activities over hMAO-B; compared to our recently reported N-substituted indole-based lead compound VIII (hMAO-B IC50 = 777 nM), compound 5 (3,4-dichloro-N-(1H-indol-5-yl)benzamide) exhibited 18-fold increase in potency (IC50 = 42 nM). A selectivity study over hMAO-A revealed an excellent selectivity index of compound 5 (SI > 2375) with a 47-fold increase compared to rasagiline (II, a well-known MAO-B inhibitor, SI > 50). A further kinetic evaluation of compound 5 over hMAO-B showed a reversible and competitive mode of inhibition with Ki value of 7 nM. Highly effective permeability and high CNS bioavailability of compound 5 with Pe = 54.49 × 10-6 cm/s were demonstrated. Compound 5 also exhibited a low cytotoxicity profile and a promising neuroprotective effect against the 6-hydroxydopamine-induced neuronal cell damage in PC12 cells, which was more effective than that of rasagiline. Docking simulations on both hMAO-B and hMAO-A supported the in vitro data and served as further molecular evidence. Accordingly, we report the discovery of compound 5 as one of the most potent indole-based MAO-B inhibitors to date which is noteworthy to be further evaluated as a promising agent for PD treatment.


Asunto(s)
Descubrimiento de Drogas , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Fármacos Neuroprotectores/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Oxidopamina/antagonistas & inhibidores , Oxidopamina/farmacología , Células PC12 , Ratas , Relación Estructura-Actividad
14.
J Enzyme Inhib Med Chem ; 36(1): 1574-1602, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34233563

RESUMEN

Lymphocyte-specific protein tyrosine kinase (Lck), a non-receptor Src family kinase, has a vital role in various cellular processes such as cell cycle control, cell adhesion, motility, proliferation, and differentiation. Lck is reported as a key factor regulating the functions of T-cell including the initiation of TCR signalling, T-cell development, in addition to T-cell homeostasis. Alteration in expression and activity of Lck results in numerous disorders such as cancer, asthma, diabetes, rheumatoid arthritis, atherosclerosis, and neuronal diseases. Accordingly, Lck has emerged as a novel target against different diseases. Herein, we amass the research efforts in literature and pharmaceutical patents during the last decade to develop new Lck inhibitors. Additionally, structure-activity relationship studies (SAR) and docking models of these new inhibitors within the active site of Lck were demonstrated offering deep insights into their different binding modes in a step towards the identification of more potent, selective, and safe Lck inhibitors.


Asunto(s)
Descubrimiento de Drogas , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
15.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207360

RESUMEN

Discoidin domain receptor (DDR) is a collagen-activated receptor tyrosine kinase that plays critical roles in regulating essential cellular processes such as morphogenesis, differentiation, proliferation, adhesion, migration, invasion, and matrix remodeling. As a result, DDR dysregulation has been attributed to a variety of human cancer disorders, for instance, non-small-cell lung carcinoma (NSCLC), ovarian cancer, glioblastoma, and breast cancer, in addition to some inflammatory and neurodegenerative disorders. Since the target identification in the early 1990s to date, a lot of efforts have been devoted to the development of DDR inhibitors. From a medicinal chemistry perspective, we attempted to reveal the progress in the development of the most promising DDR1 and DDR2 small molecule inhibitors covering their design approaches, structure-activity relationship (SAR), biological activity, and selectivity.


Asunto(s)
Receptor con Dominio Discoidina 1/antagonistas & inhibidores , Receptor con Dominio Discoidina 2/antagonistas & inhibidores , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Animales , Sitios de Unión , Biomarcadores de Tumor , Receptor con Dominio Discoidina 1/química , Receptor con Dominio Discoidina 1/metabolismo , Receptor con Dominio Discoidina 2/química , Receptor con Dominio Discoidina 2/metabolismo , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Diseño de Fármacos , Humanos , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inflamación/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Neoplasias/patología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Unión Proteica , Conformación Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/uso terapéutico , Relación Estructura-Actividad
16.
Molecules ; 26(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494492

RESUMEN

Pathological angiogenesis is a hallmark of cancer; accordingly, a number of anticancer FDA-approved drugs act by inhibiting angiogenesis via different mechanisms. However, the development process of the most potent anti-angiogenics has met various hurdles including redundancy, multiplicity, and development of compensatory mechanisms by which blood vessels are remodeled. Moreover, identification of broad-spectrum anti-angiogenesis targets is proved to be required to enhance the efficacy of the anti-angiogenesis drugs. In this perspective, a proper understanding of the structure activity relationship (SAR) of the recent anti-angiogenics is required. Various anti-angiogenic classes have been developed over the years; among them, the heterocyclic organic compounds come to the fore as the most promising, with several drugs approved by the FDA. In this review, we discuss the structure-activity relationship of some promising potent heterocyclic anti-angiogenic leads. For each lead, a molecular modelling was also carried out in order to correlate its SAR and specificity to the active site. Furthermore, an in silico pharmacokinetics study for some representative leads was presented. Summarizing, new insights for further improvement for each lead have been reviewed.


Asunto(s)
Inhibidores de la Angiogénesis , Antineoplásicos , Compuestos Heterocíclicos , Neoplasias , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacocinética , Inhibidores de la Angiogénesis/uso terapéutico , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacocinética , Compuestos Heterocíclicos/uso terapéutico , Humanos , Modelos Moleculares , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Relación Estructura-Actividad
17.
Molecules ; 26(17)2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34500757

RESUMEN

Recently, multitargeted drugs are considered a potential approach in treating cancer. In this study, twelve in-house indole-based derivatives were preliminary evaluated for their inhibitory activities over VEGFR-2, CDK-1/cyclin B and HER-2. Compound 15l showed the most inhibitory activities among the tested derivatives over CDK-1/cyclin B and HER-2. Compound 15l was tested for its selectivity in a small kinase panel. It showed dual selectivity for CDK-1/cyclin B and HER-2. Moreover, in vitro cytotoxicity assay was assessed for the selected series against nine NCI cell lines. Compound 15l showed the most potent inhibitory activities among the tested compounds. A deep in silico molecular docking study was conducted for compound 15l to identify the possible binding modes into CDK-1/cyclin B and HER-2. The docking results revealed that compound 15l displayed interesting binding modes with the key amino acids in the binding sites of both kinases. In vitro and in silico studies demonstrate the indole-based derivative 15l as a selective dual CDK-1 and HER-2 inhibitor. This emphasizes a new challenge in drug development strategies and signals a significant milestone for further structural and molecular optimization of these indole-based derivatives in order to achieve a drug-like property.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proteína Quinasa CDC2 , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Receptor ErbB-2 , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
18.
Bioorg Med Chem ; 28(13): 115525, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32371117

RESUMEN

Aurora kinases (AURKs) were identified as promising druggable targets for targeted cancer therapy. Aiming at the development of novel chemotype of dual AURKA/B inhibitors, herein we report the design and synthesis of three series of 4-anilinoquinoline derivatives bearing a sulfonamide moiety (5a-d, 9a-d and 11a-d). The % inhibition of AURKA/B was determined for all target quinolines, then compounds showed more than 50% inhibition on either of the enzymes, were evaluated further for their IC50 on the corresponding enzyme. In particular, compound 9d displayed potent AURKA/B inhibitory activities with IC50 of 0.93 and 0.09 µM, respectively. Also, 9d emerged as the most efficient anti-proliferative analogue in the US-NCI anticancer assay toward the NCI 60 cell lines panel, with broad spectrum activity against different cell lines from diverse cancer subpanels. Docking studies, confirmed that, the sulfonamide SO2 oxygen was involved in a hydrogen bond with Lys162 and Lys122 in AURKA and AURKB, respectively, whereas, the sulfonamide NH could catch hydrogen bond interaction with the surrounding amino acid residues Lys141, Glu260, and Asn261 in AURKA and Lys101, Glu177, and Asp234 in AURKB. Furthermore, N1 nitrogen of the quinoline scaffold formed an essential hydrogen bond with the hinge region key amino acids Ala213 and Ala173 in AURKA and AURKB, respectively.


Asunto(s)
Antineoplásicos/síntesis química , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa B/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/síntesis química , Quinolinas/síntesis química , Sulfonamidas/química , Antineoplásicos/farmacología , Aurora Quinasa A/metabolismo , Aurora Quinasa B/metabolismo , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/farmacología
19.
J Enzyme Inhib Med Chem ; 35(1): 1568-1580, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32752896

RESUMEN

Herein, two new series of N-substituted indole-based analogues were rationally designed, synthesized via microwave heating technology, and evaluated as noteworthy MAO-B potential inhibitors. Compared to the reported indazole-based hits VI and VII, compounds 4b and 4e exhibited higher inhibitory activities over MAO-B with IC50 values of 1.65 and 0.78 µM, respectively. When compared to the modest selectivity index of rasagiline (II, a well-known MAO-B inhibitor, SI > 50), both 4b and 4e also showed better selectivity indices (SI > 60 and 120, respectively). A further kinetic evaluation of the most potent derivative (4e) displayed a competitive mode of inhibition (inhibition constant (K i)/MAO-B = 94.52 nM). Reasonable explanations of the elicited biological activities were presented via SAR study and molecular docking simulation. Accordingly, the remarkable MAO-B inhibitory activity of 4e (N-(1-(3-fluorobenzoyl)-1H-indol-5-yl)pyrazine-2-carboxamide), with its selectivity and competitive inhibition, advocates its potential role as a promising lead worthy of further optimization.


Asunto(s)
Descubrimiento de Drogas , Indoles/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Indoles/química , Cinética , Modelos Moleculares , Estructura Molecular , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Relación Estructura-Actividad
20.
Bioorg Chem ; 86: 112-118, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30685642

RESUMEN

EGFR inhibitors are well-known as anticancer agents. Quite differently, we report our effort to develop EGFR inhibitors as anti-inflammatory agents. Pyrimidinamide EGFR inhibitors eliciting low micromolar IC50 and the structurally close non-EGFR inhibitor urea analog were synthesized. Comparing their nitric oxide (NO) production inhibitory activity in peritoneal macrophages and RAW 246.7 macrophages indicated that their anti-inflammatory activity in peritoneal macrophages might be a sequence of EGFR inhibition. Further evaluations proved that compound 4d significantly and dose-dependently inhibits LPS-induced iNOS expression and IL-1ß, IL-6, and TNF-α production via NF-κB inactivation in peritoneal macrophages. Compound 4d might serve as a lead compound for development of a novel class of anti-inflammatory EGFR inhibitors.


Asunto(s)
Amidas/farmacología , Antiinflamatorios no Esteroideos/farmacología , Benzamidas/farmacología , Inflamación/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Amidas/síntesis química , Amidas/química , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Benzamidas/síntesis química , Benzamidas/química , Supervivencia Celular/efectos de los fármacos , Citocinas/antagonistas & inhibidores , Citocinas/biosíntesis , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Humanos , Inflamación/metabolismo , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Estructura Molecular , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirimidinas/síntesis química , Pirimidinas/química , Células RAW 264.7 , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA