RESUMEN
Obesity is a major risk factor for psoriasis, but how obesity disrupts the regulatory mechanisms that keep skin inflammation in check is unclear. Here, we found that skin was enriched with a unique population of CD4+Foxp3+ regulatory T (Treg) cells expressing the nuclear receptor peroxisome proliferation-activated receptor gamma (PPARγ). PPARγ drove a distinctive transcriptional program and functional suppression of IL-17A+ γδ T cell-mediated psoriatic inflammation. Diet-induced obesity, however, resulted in a reduction of PPARγ+ skin Treg cells and a corresponding loss of control over IL-17A+ γδ T cell-mediated inflammation. Mechanistically, PPARγ+ skin Treg cells preferentially took up elevated levels of long-chain free fatty acids in obese mice, which led to cellular lipotoxicity, oxidative stress, and mitochondrial dysfunction. Harnessing the anti-inflammatory properties of these PPARγ+ skin Treg cells could have therapeutic potential for obesity-associated inflammatory skin diseases.
Asunto(s)
Psoriasis , Linfocitos T Reguladores , Animales , Ratones , PPAR gamma , Interleucina-17 , Piel , Psoriasis/inducido químicamente , Inflamación , ObesidadRESUMEN
Regulatory T cells (Tregs) within the visceral adipose tissue (VAT) play a crucial role in controlling tissue inflammation and maintaining metabolic health. VAT Tregs display a unique transcriptional profile and T cell receptor (TCR) repertoire, and closely interact with adipocytes, stromal cells, and other immune components within the local VAT microenvironment. However, in the context of obesity, there is a notable decline in VAT Tregs, resulting in heightened VAT inflammation and insulin resistance. A comprehensive understanding of the biology of VAT Tregs is essential for the development of Treg-based therapies for mitigating obesity-associated metabolic diseases. Recent advancements in lineage tracing tools, genetic mouse models, and various single cell "omics" techniques have significantly progressed our understandings of the origin, differentiation, and regulation of this unique VAT Treg population at steady state and during obesity. The identification of VAT-Treg precursor cells in the secondary lymphoid organs has also provided important insights into the timing, location, and mechanisms through which VAT Tregs acquire their distinctive phenotype that enables them to function within a lipid-rich microenvironment. In this review, we highlight key recent breakthroughs in the VAT-Treg field while discussing pivotal questions that remain unanswered.
Asunto(s)
Grasa Intraabdominal , Obesidad , Linfocitos T Reguladores , Animales , Linfocitos T Reguladores/inmunología , Humanos , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/inmunología , Obesidad/inmunología , Obesidad/metabolismo , Diferenciación CelularRESUMEN
Bordetella pertussis is the primary causative agent of pertussis (whooping cough), which is a respiratory infection that leads to a violent cough and can be fatal in infants. There is a need to develop more effective vaccines because of the resurgence of cases of pertussis in the United States since the switch from the whole-cell pertussis vaccines (wP) to the acellular pertussis vaccines (aP; diphtheria-tetanus-acellular-pertussis vaccine/tetanus-diphtheria-pertussis vaccine). Adenylate cyclase toxin (ACT) is a major virulence factor of B. pertussis that is (i) required for establishment of infection, (ii) an effective immunogen, and (iii) a protective antigen. The C-terminal repeats-in-toxin domain (RTX) of ACT is sufficient to induce production of toxin-neutralizing antibodies. In this study, we characterized the effectiveness of vaccines containing the RTX antigen against experimental murine infection with B. pertussis RTX was not protective as a single-antigen vaccine against B. pertussis challenge, and adding RTX to 1/5 human dose of aP did not enhance protection. Since the doses of aP used in murine studies are not proportionate to mouse/human body masses, we titrated the aP from 1/20 to 1/160 of the human dose. Mice receiving 1/80 human aP dose had bacterial burden comparable to those of naive controls. Adding RTX antigen to the 1/80 aP base resulted in enhanced bacterial clearance. Inclusion of RTX induced production of antibodies recognizing RTX, enhanced production of anti-pertussis toxin, decreased secretion of proinflammatory cytokines, such as interleukin-6, and decreased recruitment of total macrophages in the lung. This study shows that adding RTX antigen to an appropriate dose of aP can enhance protection against B. pertussis challenge in mice.
Asunto(s)
Adenilil Ciclasas/inmunología , Bordetella pertussis/inmunología , Vacuna contra la Tos Ferina/inmunología , Toxoides/inmunología , Tos Ferina/inmunología , Adenilil Ciclasas/administración & dosificación , Adenilil Ciclasas/genética , Animales , Anticuerpos Antibacterianos/inmunología , Anticuerpos Neutralizantes/inmunología , Bordetella pertussis/genética , Evaluación Preclínica de Medicamentos , Humanos , Ratones , Vacuna contra la Tos Ferina/administración & dosificación , Vacuna contra la Tos Ferina/genética , Toxoides/administración & dosificación , Toxoides/genética , Tos Ferina/microbiologíaRESUMEN
Since their discovery over a decade ago, much has been learned regarding the importance and function of visceral adipose tissue (VAT)-resident regulatory T cells (Tregs). VAT Tregs play a critical role in controlling VAT inflammation and alleviating metabolic disease. However, this population is disrupted in obesity which exacerbates VAT inflammation and metabolic abnormalities. Therefore, understanding the factors governing the accumulation and maintenance of VAT Tregs, both at steady state and under disease conditions, is crucial for identifying the mechanisms underlying obesity-associated metabolic disease and developing novel therapies. Expansion and maintenance of the VAT Treg compartment is strongly influenced by factors in the local tissue microenvironment, including cytokines, T-cell receptor ligands, hormones, and various metabolites. This mini-review will primarily focus on recent advances in our understandings regarding the regulation of mouse epididymal VAT (eVAT) Tregs, which are the most thoroughly characterized VAT Treg population, by tissue microenvironmental factors and cellular metabolic processes. We will also briefly discuss the limited knowledge available regarding the regulation of mouse ovarian VAT (oVAT) Tregs and human omental VAT Tregs, highlight some lingering questions, and provide a prospective view on where the field is heading.
RESUMEN
Excess inflammation and canonical BMP receptor (BMPR) signaling are coinciding hallmarks of the early stages of injury-induced endochondral heterotopic ossification (EHO), especially in the rare genetic disease fibrodysplasia ossificans progressiva (FOP). Multiple inflammatory signaling pathways can synergistically enhance BMP-induced Smad1/5/8 activity in multiple cell types, suggesting the importance of pathway crosstalk in EHO and FOP. Toll-like receptors (TLRs) and IL-1 receptors mediate many of the earliest injury-induced inflammatory signals largely via MyD88-dependent pathways. Thus, the hypothesis that MyD88-dependent signaling is required for EHO was tested in vitro and in vivo using global or Pdgfrα-conditional deletion of MyD88 in FOP mice. As expected, IL-1ß or LPS synergistically increased Activin A (ActA)-induced phosphorylation of Smad 1/5 in fibroadipoprogenitors (FAPs) expressing Alk2R206H. However, conditional deletion of MyD88 in Pdgfrα-positive cells of FOP mice did not significantly alter the amount of muscle injury-induced EHO. Even more surprisingly, injury-induced EHO was not significantly affected by global deletion of MyD88. These studies demonstrate that MyD88-dependent signaling is dispensable for injury-induced EHO in FOP mice.
RESUMEN
Alterations in the NRF2/KEAP1 pathway result in the constitutive activation of NRF2, leading to the aberrant induction of antioxidant and detoxification enzymes, including NQO1. The NQO1 bioactivatable agent ß-lapachone can target cells with high NQO1 expression but relies in the generation of reactive oxygen species (ROS), which are actively scavenged in cells with NRF2/KEAP1 mutations. However, whether NRF2/KEAP1 mutations influence the response to ß-lapachone treatment remains unknown. To address this question, we assessed the cytotoxicity of ß-lapachone in a panel of NSCLC cell lines bearing either wild-type or mutant KEAP1. We found that, despite overexpression of NQO1, KEAP1 mutant cells were resistant to ß-lapachone due to enhanced detoxification of ROS, which prevented DNA damage and cell death. To evaluate whether specific inhibition of the NRF2-regulated antioxidant enzymes could abrogate resistance to ß-lapachone, we systematically inhibited the four major antioxidant cellular systems using genetic and/or pharmacologic approaches. We demonstrated that inhibition of the thioredoxin-dependent system or copper-zinc superoxide dismutase (SOD1) could abrogate NRF2-mediated resistance to ß-lapachone, while depletion of catalase or glutathione was ineffective. Interestingly, inhibition of SOD1 selectively sensitized KEAP1 mutant cells to ß-lapachone exposure. Our results suggest that NRF2/KEAP1 mutational status might serve as a predictive biomarker for response to NQO1-bioactivatable quinones in patients. Further, our results suggest SOD1 inhibition may have potential utility in combination with other ROS inducers in patients with KEAP1/NRF2 mutations.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Resistencia a Antineoplásicos , Neoplasias Pulmonares/genética , NAD(P)H Deshidrogenasa (Quinona)/genética , Factor 2 Relacionado con NF-E2/genética , Naftoquinonas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células HEK293 , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Superóxido Dismutasa-1/antagonistas & inhibidores , Tiorredoxina Reductasa 1/antagonistas & inhibidoresRESUMEN
NRF2 is emerging as a major regulator of cellular metabolism. However, most studies have been performed in cancer cells, where co-occurring mutations and tumor selective pressures complicate the influence of NRF2 on metabolism. Here we use genetically engineered, non-transformed primary murine cells to isolate the most immediate effects of NRF2 on cellular metabolism. We find that NRF2 promotes the accumulation of intracellular cysteine and engages the cysteine homeostatic control mechanism mediated by cysteine dioxygenase 1 (CDO1), which catalyzes the irreversible metabolism of cysteine to cysteine sulfinic acid (CSA). Notably, CDO1 is preferentially silenced by promoter methylation in human non-small cell lung cancers (NSCLC) harboring mutations in KEAP1, the negative regulator of NRF2. CDO1 silencing promotes proliferation of NSCLC by limiting the futile metabolism of cysteine to the wasteful and toxic byproducts CSA and sulfite (SO32-), and depletion of cellular NADPH. Thus, CDO1 is a metabolic liability for NSCLC cells with high intracellular cysteine, particularly NRF2/KEAP1 mutant cells.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Cisteína-Dioxigenasa/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Animales , Cisteína/análogos & derivados , Cisteína/metabolismo , Metilación de ADN , Silenciador del Gen , Humanos , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Regiones Promotoras GenéticasRESUMEN
Hematopoietic stem and progenitor cell (HSPC) compartments are altered to direct immune responses to infection. Their roles during immunization are not well-described. To elucidate mechanisms for waning immunity following immunization with acellular vaccines (ACVs) against Bordetella pertussis (Bp), we tested the hypothesis that immunization with Bp ACVs and whole cell vaccines (WCVs) differ in directing the HSPC characteristics and immune cell development patterns that ultimately contribute to the types and quantities of cells produced to fight infection. Our data demonstrate that compared to control and ACV-immunized CD-1 mice, immunization with an efficacious WCV drives expansion of hematopoietic multipotent progenitor cells (MPPs), increases circulating white blood cells (WBCs), and alters the size and composition of lymphoid organs. In addition to MPPs, common lymphoid progenitor (CLP) proportions increase in the bone marrow of WCV-immunized mice, while B220+ cell proportions decrease. Upon subsequent infection, increases in maturing B cell populations are striking in WCV-immunized mice. RNAseq analyses of HSPCs revealed that WCV and ACV-immunized mice vastly differ in developing VDJ gene segment diversity. Moreover, gene set enrichment analyses demonstrate WCV-immunized mice exhibit unique gene signatures that suggest roles for interferon (IFN) induced gene expression. Also observed in naïve infection, these IFN stimulated gene (ISG) signatures point toward roles in cell survival, cell cycle, autophagy, and antigen processing and presentation. Taken together, these findings underscore the impact of vaccine antigen and adjuvant content on skewing and/or priming HSPC populations for immune response.