Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Anim Ecol ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837453

RESUMEN

In seasonal environments, the fitness of animals depends upon the successful integration of life-history stages throughout their annual cycle. Failing to do so can lead to negative carry-over effects where individuals are transitioning into the next season in different states, consequently affecting their future performance. However, carry-over effects can be masked by individual quality when individuals vary in their efficiency at acquiring resources year after year (i.e. 'quality'), leading to cross-seasonal consistency in individual performance. Here we investigated the relative importance of carry-over effects and individual quality in determining cross-seasonal interactions and consequences for breeding success over the full annual cycle of a migratory seabird (black-legged kittiwake Rissa tridactyla). We monitored the reproduction and annual movement of kittiwakes over 13 years using geolocators to estimate their breeding success, distribution and winter energy expenditure. We combined this with an experimental approach (clutch removal experiment, 2 years) to manipulate the reproductive effort irrespective of individual quality. Piecewise path analyses showed that successful breeders reproduced earlier and were more likely to breed successfully again the following year. This positive interaction among consecutive breeding stages disappeared after controlling for individual quality, suggesting that quality was dominant in determining seasonal interactions. Moreover, controlling experimentally for individual quality revealed underlying carry-over effects that were otherwise masked by quality, with breeding costs paid in higher energy expenditure and delayed onset of reproduction. We highlight the need to combine an experimental approach along with long-term data while assessing apparent carry-over effects in wild animals, and their potential impact on fitness and population demography.

2.
Environ Sci Technol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991194

RESUMEN

Seabirds are often considered sentinel species of marine ecosystems, and their blood and eggs utilized to monitor local environmental contaminations. Most seabirds breeding in the Arctic are migratory and thus are exposed to geographically distinct sources of contamination throughout the year, including per- and polyfluoroalkyl substances (PFAS). Despite the abundance and high toxicity of PFAS, little is known about whether blood concentrations at breeding sites reliably reflect local contamination or exposure in distant wintering areas. We tested this by combining movement tracking data and PFAS analysis (nine compounds) from the blood of prelaying black-legged kittiwakes (Rissa tridactyla) nesting in Arctic Norway (Svalbard). PFAS burden before egg laying varied with the latitude of the wintering area and was negatively associated with time upon return of individuals at the Arctic nesting site. Kittiwakes (n = 64) wintering farther south carried lighter burdens of shorter-chain perfluoroalkyl carboxylates (PFCAs, C9-C12) and heavier burdens of longer chain PFCAs (C13-C14) and perfluorooctanesulfonic acid compared to those wintering farther north. Thus, blood concentrations prior to egg laying still reflected the uptake during the previous wintering stage, suggesting that migratory seabirds can act as biovectors of PFAS to Arctic nesting sites.

3.
Horm Behav ; 154: 105389, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37327549

RESUMEN

Seasonal timing of breeding is usually considered to be triggered by endogenous responses linked to predictive cues (e.g., photoperiod) and supplementary cues that vary annually (e.g., food supply), but social cues are also important. Females may be more sensitive to supplementary cues because of their greater role in reproductive timing decisions, while males may only require predictive cues. We tested this hypothesis by food-supplementing female and male colonial seabirds (black-legged kittiwakes, Rissa tridactyla) during the pre-breeding season. We measured colony attendance via GPS devices, quantified pituitary and gonadal responses to gonadotropin releasing hormone (GnRH) challenge, and observed subsequent laying phenology. Food supplementation advanced laying phenology and increased colony attendance. While female pituitary responses to GnRH were consistent across the pre-breeding season, males showed a peak in pituitary sensitivity at approximately the same time that most females were initiating follicle development. The late peak in male pituitary response to GnRH questions a common assumption that males primarily rely on predictive cues (e.g., photoperiod) while females also rely on supplementary cues (e.g., food availability). Instead, male kittiwakes may integrate synchronising cues from their social environment to adjust their reproductive timing to coincide with female timing.


Asunto(s)
Charadriiformes , Hormona Liberadora de Gonadotropina , Animales , Femenino , Masculino , Hormona Liberadora de Gonadotropina/farmacología , Hormona Liberadora de Gonadotropina/metabolismo , Reproducción/fisiología , Hipófisis/metabolismo , Fotoperiodo
4.
Environ Sci Technol ; 57(29): 10792-10803, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37439143

RESUMEN

Whether perfluoroalkyl sulfonates (PFSAs) and perfluoroalkyl carboxylates (PFCAs) are responding to legislative restrictions and showing decreasing trends in top marine predators that range across the eastern North Pacific Ocean is unclear. Here, we examined longer-term temporal trends (1973-2019) of 4 PFSAs and 13 PFCAs, as well stable isotopes of δ13C and δ15N, in the eggs of 4 seabird species sampled along a nearshore-offshore gradient; double-crested cormorants (Nannopterum auritum), pelagic cormorants (Urile pelagicus), rhinoceros auklets (Cerorhinca monocerata), and Leach's storm-petrels (Hydrobates leucorhous) from the Pacific coast of British Columbia, Canada. PFOS was the most abundant PFSA (79-94%) detected in all eggs regardless of colony and year, with the highest concentrations, on average, measured in auklet eggs (mean = 58 ng g-1, range = 11-286 ng g-1 ww). Perfluoroundecanoic acid (PFUdA) and perfluorotridecanoic acid (PFTriDA) were the dominant long-chain PFCAs (≥30% combined). The majority of PFSAs (including PFOS) are statistically declining (p < 0.001) in the eggs of all 4 species with PFOS half-lives ranging from 2.6 to 7.8 years. Concentrations of long-chain PFCAs exhibited a trajectory comprised of linear increases and second-order declines, suggesting that the rate of uptake of PFCAs is slowing or leveling off. These trends are consistent with the voluntarily ceased production of PFSAs by 3M circa 2000-2003 and are among the first from the northeast Pacific to indicate a positive response to several regulations and restrictions on PFCAs from facility emissions and product content.


Asunto(s)
Ácidos Alcanesulfónicos , Charadriiformes , Fluorocarburos , Animales , Monitoreo del Ambiente , Fluorocarburos/análisis , Aves , Colombia Británica , Alcanosulfonatos , Ácidos Carboxílicos , Ácidos Alcanesulfónicos/análisis
5.
Artículo en Inglés | MEDLINE | ID: mdl-37574042

RESUMEN

The ability to efficiently measure the health and nutritional status of wild populations in situ is a valuable tool, as many methods of evaluating animal physiology do not occur in real-time, limiting the possibilities for direct intervention. This study investigates the use of blood plasma metabolite concentrations, measured via point-of-care devices or a simple plate reader assay, as indicators of nutritional state in free-living seabirds. We experimentally manipulated the energy expenditure of wild black-legged kittiwakes on Middleton Island, Alaska, and measured the plasma concentrations of glucose, cholesterol, B-hydroxybutyrate, and triglycerides throughout the breeding season, along with measures of body condition (size-corrected mass [SCM] and muscle depth). Supplemental feeding improved the nutritional state of kittiwakes by increasing feeding rate (higher glucose and triglycerides, lower cholesterol), and flight-handicapping caused a slight nutritional decline (lower glucose and triglycerides, higher cholesterol and B-hydroxybutyrate). Glucose and triglycerides were the best indicators of nutritional state when used alongside SCM, and improved upon commonly used metrics for measuring individual condition (i.e. SCM or mass alone). Metabolite concentrations varied across the breeding period, suggesting that the pre-laying stage, when feeding rates tend to be lower, was the most nutritionally challenging period for kittiwakes (low glucose, high cholesterol). Muscle depth also varied by treatment and breeding stage, but differed from other nutritional indices, suggesting that muscle depth is an indicator of exercise and activity level rather than nutrition. Here we demonstrate potential for the use of blood plasma metabolites measured via point-of-care devices as proxies for evaluating individual health, population health, and environmental food availability.


Asunto(s)
Colesterol , Estado Nutricional , Animales , Triglicéridos , Hidroxibutiratos , Aves
6.
Proc Biol Sci ; 289(1981): 20220300, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36000233

RESUMEN

Rising global temperatures are expected to increase reproductive costs for wildlife as greater thermoregulatory demands interfere with reproductive activities. However, predicting the temperatures at which reproductive performance is negatively impacted remains a significant hurdle. Using a thermoregulatory polygon approach, we derived a reproductive threshold temperature for an Arctic songbird-the snow bunting (Plectrophenax nivalis). We defined this threshold as the temperature at which individuals must reduce activity to suboptimal levels (i.e. less than four-time basal metabolic rate) to sustain nestling provisioning and avoid overheating. We then compared this threshold to operative temperatures recorded at high (82° N) and low (64° N) Arctic sites to estimate how heat constraints translate into site-specific impacts on sustained activity level. We predict buntings would become behaviourally constrained at operative temperatures above 11.7°C, whereupon they must reduce provisioning rates to avoid overheating. Low-Arctic sites had larger fluctuations in solar radiation, consistently producing daily periods when operative temperatures exceeded 11.7°C. However, high-latitude birds faced entire, consecutive days when parents would be unable to sustain required provisioning rates. These data indicate that Arctic warming is probably already disrupting the breeding performance of cold-specialist birds and suggests counterintuitive and severe negative impacts of warming at higher latitude breeding locations.


Asunto(s)
Pájaros Cantores , Animales , Regiones Árticas , Respuesta al Choque Térmico , Reproducción , Temperatura
7.
J Exp Biol ; 225(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35019973

RESUMEN

Breeding is costly for many animals, including birds that must deliver food to a central place (i.e. nest). Measuring energy expenditure throughout the breeding season can provide valuable insight into physiological limitations by highlighting periods of high demand, and ultimately allows improvement of conservation strategies. However, quantifying energy expenditure in wildlife can be challenging, as existing methods do not measure both active (e.g. foraging) and resting energy costs across short and long time scales. Here, we developed a novel method for comparing active and resting costs in 66 pre-breeding and breeding seabirds (black-legged kittiwakes, Rissa tridactyla) by combining accelerometry and triiodothyronine (T3) as proxies for active and resting costs, respectively. Active energy costs were higher during incubation (P=0.0004) and chick rearing (P<0.0001) than during pre-laying, because of an increase in the time spent in flight of 11% (P=0.0005) and 15% (P<0.0001), respectively. Levels of T3, reflecting resting costs, peaked marginally during incubation with a mean (±s.d.) concentration of 4.71±1.97 pg ml-1 in comparison to 2.66±1.30 pg ml-1 during pre-laying (P=0.05) and 3.16±2.85 pg ml-1 during chick rearing (P=0.11). Thus, although chick rearing is often assumed to be the costliest breeding stage by multiple studies, our results suggest that incubation could be more costly as a result of high resting costs. We highlight the importance of accounting for both active and resting costs when assessing energy expenditure.


Asunto(s)
Charadriiformes , Acelerometría , Animales , Regiones Árticas , Aves/fisiología , Charadriiformes/fisiología , Metabolismo Energético/fisiología
8.
J Exp Biol ; 225(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35593255

RESUMEN

Accelerometry has been widely used to estimate energy expenditure in a broad array of terrestrial and aquatic species. However, a recent reappraisal of the method showed that relationships between dynamic body acceleration (DBA) and energy expenditure weaken as the proportion of non-mechanical costs increases. Aquatic air breathing species often exemplify this pattern, as buoyancy, thermoregulation and other physiological mechanisms disproportionately affect oxygen consumption during dives. Combining biologging with the doubly labelled water method, we simultaneously recorded daily energy expenditure (DEE) and triaxial acceleration in one of the world's smallest wing-propelled breath-hold divers, the dovekie (Alle alle). These data were used to estimate the activity-specific costs of flying and diving and to test whether overall dynamic body acceleration (ODBA) is a reliable predictor of DEE in this abundant seabird. Average DEE for chick-rearing dovekies was 604±119 kJ day-1 across both sampling years. Despite recording lower stroke frequencies for diving than for flying (in line with allometric predictions for auks), dive costs were estimated to surpass flight costs in our sample of birds (flying: 7.24× basal metabolic rate, BMR; diving: 9.37× BMR). As expected, ODBA was not an effective predictor of DEE in this species. However, accelerometer-derived time budgets did accurately estimate DEE in dovekies. This work represents an empirical example of how the apparent energetic costs of buoyancy and thermoregulation limit the effectiveness of ODBA as the sole predictor of overall energy expenditure in small shallow-diving endotherms.


Asunto(s)
Charadriiformes , Buceo , Aceleración , Animales , Aves/fisiología , Buceo/fisiología , Metabolismo Energético/fisiología , Consumo de Oxígeno
9.
Conserv Biol ; 36(6): e13976, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35837961

RESUMEN

Citizen science is filling important monitoring gaps and thus contributing to the conservation of rare or threatened animals. However, most researchers have used peer-reviewed publications to evaluate citizen science contributions. We quantified a larger spectrum of citizen science's contributions to the monitoring of rare or threatened animals, including contributions to the peer-reviewed publications, gray literature and to conservation measures (i.e., actions taken as a direct result of citizen science monitoring). We sought to provide broad information on how results of studies of citizen science monitoring is used. We also evaluated factors associated with success of citizen science projects. We conducted a web search to find citizen science projects focusing on rare and threatened species and surveyed citizen science project managers about their contributions and factors influencing their success. The number of projects increased rapidly after 2010. Almost one-half of the citizen science projects produced at least 1 peer-reviewed publication, 64% produced at least 1 gray literature publication, and 64% resulted in at least 1 conservation measure. Conservation measures covered a wide range of actions, including management and mitigation plans, modification of threat status, identification and establishment of protected areas, habitat restoration, control of invasive species, captive breeding programs, and awareness campaigns. Longevity, data quality, and collaboration type best explained quantities of all types of scientific contributions of citizen science. We found that citizen science contributed substantially to knowledge advancement and conservation, especially when programs were long term and had rigorous data collection and management standards, and multidisciplinary or transdisciplinary collaborations.


La ciencia ciudadana contribuye a llenar vacíos en el monitoreo, lo que ayuda a la conservación de animales raros o amenazados. Sin embargo, la mayoría de los investigadores han usado publicaciones revisadas por pares para evaluar las contribuciones de la ciencia ciudadana. Cuantificamos un mayor espectro de las contribuciones de la ciencia ciudadana al monitoreo de animales raros y amenazados, incluyendo las contribuciones a la literatura gris, a las publicaciones revisada por pares y a las medidas de conservación (es decir, las acciones tomadas como resultado directo del monitoreo ciudadano). Buscamos proporcionar información generalizada sobre cómo los resultados de los estudios de monitoreo ciudadano es usado. También evaluamos los factores asociados con el éxito de los proyectos de ciencia ciudadana. Realizamos una búsqueda en línea para encontrar proyectos de ciencia ciudadana enfocados en especies raras o amenazadas y encuestamos a los gestores de estos proyectos sobre sus contribuciones y los factores que influyen sobre su éxito. El número de proyectos incrementó rápidamente a partir de 2010. De los proyectos de ciencia ciudadana, casi la mitad produjo al menos 1 publicación revisada por pares, el 64% produjo al menos una publicación en la literatura gris y el 64% derivó en al menos 1 medida de conservación. Las medidas de conservación abarcaron una gama extensa de acciones que incluyeron planes de gestión y mitigación, modificación del estado de amenaza, identificación y establecimiento de áreas protegidas, restauración del hábitat, control de especies invasoras, programas de reproducción en cautiverio y campañas de concientización. La longevidad, calidad de los datos y el tipo de colaboración explicaron de mejor manera las cantidades de todos los tipos de contribuciones científicas hechas por la ciencia ciudadana. Descubrimos que la ciencia ciudadana contribuyó sustancialmente al avance del conocimiento y la conservación, especialmente cuando los programas eran a largo plazo y contaban con estándares rigurosos de recolección y gestión de datos, y con colaboraciones multi o transdisciplinarias.


Asunto(s)
Ciencia Ciudadana , Animales , Conservación de los Recursos Naturales , Ecosistema , Exactitud de los Datos , Recolección de Datos
10.
Environ Sci Technol ; 56(17): 12097-12105, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35946869

RESUMEN

Marine predators are monitored as indicators of pollution, but such trends can be complicated by variation in diet. Glaucous-winged gulls (Larus glaucescens) have experienced a dietary shift over the past century, from mainly marine to including more terrestrial/freshwater inputs, with unknown impacts on mercury (Hg) trends. We examined 109-year trends in total mercury (THg) and methylmercury (MeHg) concentrations in glaucous-winged gull feathers (1887-1996) from the Salish Sea. Adult flank feathers had higher MeHg concentrations than immature feathers, and males head feathers had higher THg concentrations than females. Overall, we found no evidence of a trend in feather MeHg or THg concentrations over time from 1887 to 1996. In the same individuals, δ15N, δ13C, and δ34S declined over time in gull feathers. In comparison, egg THg concentrations declined from 1970 to 2019 in two species of cormorants, likely reflecting decreases in local Hg sources. We conclude that diet shifts through time may have countered increased Hg deposition from long-range transport in glaucous-winged gulls. The lack of Hg trends over time in glaucous-winged gull feathers provides additional support that these gulls have decreased the amount of marine forage fish in their diet.


Asunto(s)
Charadriiformes , Mercurio , Compuestos de Metilmercurio , Animales , Dieta , Monitoreo del Ambiente , Plumas/química , Femenino , Masculino , Mercurio/análisis
11.
Oecologia ; 199(2): 367-376, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35716234

RESUMEN

Breeding animals trade off maximizing energy output to increase their number of offspring with conserving energy to ensure their own survival, leading to an energetic ceiling influenced by external, environmental factors or by internal, physiological factors. We examined whether internal or external factors limited energy expenditure by supplementally feeding breeding black-legged kittiwakes varying in individual quality, based on earlier work that defined late breeders as low-quality and early breeders as high-quality individuals. We tested whether energy expenditure increased when food availability decreased in both low- and high-quality birds; we predicted this would only occur in high-quality individuals capable of sustaining high levels of energy expenditure. Here, we find that food-supplemented birds expended less energy than control birds because they spent more time at the colony. However, foraging trips of food-supplemented birds were only slightly shorter than control birds, implying that food-supplemented birds were limited by food availability at sea similarly to control birds. Late breeders expended less energy, suggesting that low-quality individuals may not intake the energy necessary for sustaining high-energy output. Food-supplemented birds had more offspring than control birds, but offspring number did not influence energy expenditure, supporting the idea that the birds reached an energy ceiling. Males and lighter birds expended more energy, possibly compensating for relatively higher energy intake. Chick-rearing birds were working near their maximum, with highest levels of expenditure for early-laying (high-quality) individuals foraging at sea. Due to fluctuating marine environments, kittiwakes may be forced to change their foraging behaviors to maintain the balance between reproduction and survival.


Asunto(s)
Charadriiformes , Reproducción , Animales , Aves/fisiología , Charadriiformes/fisiología , Metabolismo Energético/fisiología , Abastecimiento de Alimentos , Masculino , Reproducción/fisiología
12.
Oecologia ; 198(2): 295-306, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34657176

RESUMEN

Highly mobile predators can show strong numerical responses to pulsed resources, sometimes resulting in irruptions where large numbers of young invade landscapes at a continental scale. High production of young in irruption years may have a strong influence on the population dynamics unless immature survival is reduced compared to non-irruption years. This could occur if subordinate individuals (mainly immatures) are forced into suboptimal habitats due to density-dependent effects in irruption years. To test whether irruptive individuals had lower survival than non-irruptive ones, we combined necropsy results (N = 365) with telemetry (N = 185) from more than 20 years to record timing and causes of mortality in snowy owls (Bubo scandiacus), which irrupt into eastern North America during winter following high breeding output caused by lemming peaks in the Arctic. Mortality was more than four times higher in irruption years than non-irruption years, but only for immatures, and occurred disproportionately in early winter for immatures, but not adults. Mortality was also higher in eastern North America, where owl abundance fluctuates considerably between years, compared to core winter regions of the Arctic and Prairies where populations are more stable. Most mortality was not due to starvation, but rather associated with human activity, especially vehicle collisions. We conclude that immature snowy owls that irrupt into eastern North America are limited by density-dependent factors, such as increased competition forcing individuals to occupy risky human-altered habitats. For highly mobile, irruptive animals, resource pulses may have a limited impact on population dynamics due to low subsequent survival of breeding output during the nonbreeding season.


Asunto(s)
Rapaces , Estrigiformes , Animales , Ecosistema , Dinámica Poblacional , Estaciones del Año
13.
Environ Res ; 212(Pt A): 113190, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35367428

RESUMEN

Arctic species encounter multiple stressors including climate change and environmental contaminants. Some contaminants may disrupt hormones that govern the behavioural responses of wildlife to climatic variation, and thus the capacity of species to respond to climate change. We investigated correlative interactions between legacy and emerging persistent organic pollutants (POPs), mercury (Hg), hormones and behaviours, in thick-billed murres (Uria lomvia) (N = 163) breeding in northern Hudson Bay (2016-2018). The blood profile of the murres was dominated by methylmercury (MeHg), followed by much lower levels of sum (∑) 35 polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB) and p,p'-dichlorodiphenyltrichloroethylene (DDE), polybrominated diphenyl ethers (PBDEs) BDE-47, -99 and BDE-100; all other measured organochlorine pesticides and replacement brominated flame retardants had low concentrations if detected. Inter-annual variations occurred in MeHg, circulating triiodothyronine (T3), thyroxine (T4), and the foraging behaviours of the murres, identified using GPS-accelerometers. Compared to the 50-year mean date (1971-2021) for 50% of sea-ice coverage in Hudson Bay, sea-ice breakup was 1-2 weeks earlier (2016, 2017) or comparable (2018). Indeed, 2017 was the earliest year on record. Consistent with relationships identified individually between MeHg and total T3, and T3 and foraging behaviour, a direct interaction between these three parameters was evident when all possible interactions among measured chemical pollutants, hormones, and behaviours of the murres were considered collectively (path analysis). When murres were likely already stressed due to early sea-ice breakup (2016, 2017), blood MeHg influenced circulating T3 that in turn reduced foraging time underwater. We conclude that when sea-ice breaks up early in the breeding season, Hg may interfere with the ability of murres to adjust their foraging behaviour via T3 in relation to variation in sea-ice.


Asunto(s)
Charadriiformes , Buceo , Contaminantes Ambientales , Mercurio , Bifenilos Policlorados , Animales , Regiones Árticas , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Hormonas , Mercurio/análisis , Bifenilos Policlorados/análisis
14.
Horm Behav ; 127: 104874, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33191199

RESUMEN

Current food supply is a major driver of timing of breeding in income-breeding animals, likely because increased net energy balance directly increases reproductive hormones and advances breeding. In capital breeders, increased net energy balance increases energy reserves, which eventually leads to improved reproductive readiness and earlier breeding. To test the hypothesis that phenology of income-breeding birds is independent of energy reserves, we conducted an experiment on food-supplemented ("fed") and control female black-legged kittiwakes (Rissa tridactyla). We temporarily increased energy costs (via weight handicap) in a 2 × 2 design (fed/unfed; handicapped/unhandicapped) during the pre-laying period and observed movement via GPS-accelerometry. We measured body mass, baseline hormones (corticosterone; luteinising hormone) before and after handicap manipulation, and conducted a gonadotropin-releasing hormone challenge. Females from all treatment groups foraged in similar areas, implying that individuals could adjust time spent foraging, but had low flexibility to adjust foraging distance. Consistent with the idea that income breeders do not accumulate reserves in response to increased food supply, fed birds remained within an energy ceiling by reducing time foraging instead of increasing energy reserves. Moreover, body mass remained constant until the onset of follicle development 20 days prior to laying regardless of feeding or handicap, implying that females were using a 'lean and fit' approach to body mass rather than accumulating lipid reserves for breeding. Increased food supply advanced endocrine and laying phenology and altered interactions between the hypothalamic-pituitary-adrenal axis and the hypothalamic-pituitary-gonadal axis, but higher energy costs (handicap) had little effect. Consistent with our hypothesis, increased food supply (but not net energy balance) advanced endocrine and laying phenology in income-breeding birds without any impact on energy reserves.


Asunto(s)
Charadriiformes/fisiología , Abastecimiento de Alimentos , Hormonas Gonadales/metabolismo , Conducta Sexual Animal/fisiología , Animales , Aves/fisiología , Composición Corporal , Corticosterona/metabolismo , Metabolismo Energético/fisiología , Conducta Exploratoria/fisiología , Conducta Alimentaria/fisiología , Femenino , Alimentos , Hormona Liberadora de Gonadotropina/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Hormona Luteinizante/metabolismo , Masculino , Sistema Hipófiso-Suprarrenal/metabolismo , Reproducción/fisiología , Factores de Tiempo
15.
J Exp Biol ; 224(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34232314

RESUMEN

The Arctic is warming at approximately twice the global rate, with well-documented indirect effects on wildlife. However, few studies have examined the direct effects of warming temperatures on Arctic wildlife, leaving the importance of heat stress unclear. Here, we assessed the direct effects of increasing air temperatures on the physiology of thick-billed murres (Uria lomvia), an Arctic seabird with reported mortalities due to heat stress while nesting on sun-exposed cliffs. We used flow-through respirometry to measure the response of body temperature, resting metabolic rate, evaporative water loss and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production) in murres while experimentally increasing air temperature. Murres had limited heat tolerance, exhibiting: (1) a low maximum body temperature (43.3°C); (2) a moderate increase in resting metabolic rate relative that within their thermoneutral zone (1.57 times); (3) a small increase in evaporative water loss rate relative that within their thermoneutral zone (1.26 times); and (4) a low maximum evaporative cooling efficiency (0.33). Moreover, evaporative cooling efficiency decreased with increasing air temperature, suggesting murres were producing heat at a faster rate than they were dissipating it. Larger murres also had a higher rate of increase in resting metabolic rate and a lower rate of increase in evaporative water loss than smaller murres; therefore, evaporative cooling efficiency declined with increasing body mass. As a cold-adapted bird, murres' limited heat tolerance likely explains their mortality on warm days. Direct effects of overheating on Arctic wildlife may be an important but under-reported impact of climate change.


Asunto(s)
Termotolerancia , Animales , Aves , Regulación de la Temperatura Corporal , Calor , Pérdida Insensible de Agua
16.
J Exp Biol ; 223(Pt 22)2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33071216

RESUMEN

Muscle ultrastructure is closely linked with athletic performance in humans and lab animals, and presumably plays an important role in the movement ecology of wild animals. Movement is critical for wild animals to forage, escape predators and reproduce. However, little evidence directly links muscle condition to locomotion in the wild. We used GPS-accelerometers to examine flight behaviour and muscle biopsies to assess muscle ultrastructure in breeding black-legged kittiwakes (Rissa tridactyla). Biopsied kittiwakes showed similar reproductive success and subsequent over-winter survival to non-biopsied kittiwakes, suggesting that our study method did not greatly impact foraging ability. Muscle fibre diameter was negatively associated with wing beat frequency, likely because larger muscle fibres facilitate powered flight. The number of nuclei per fibre was positively associated with average air speed, likely because higher power output needed by faster-flying birds required plasticity for muscle fibre recruitment. These results suggest the potential for flight behaviour to predict muscle ultrastructure.


Asunto(s)
Animales Salvajes , Charadriiformes , Acelerometría , Animales , Aves , Vuelo Animal , Humanos , Fibras Musculares Esqueléticas
17.
Biol Lett ; 16(1): 20190725, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31937217

RESUMEN

Individual condition at one stage of the annual cycle is expected to influence behaviour during subsequent stages, yet experimental evidence of food-mediated carry-over effects is scarce. We used a food supplementation experiment to test the effects of food supply during the breeding season on migration phenology and non-breeding behaviour. We provided an unlimited supply of fish to black-legged kittiwakes (Rissa tridactyla) during their breeding season on Middleton Island, Alaska, monitored reproductive phenology and breeding success, and used light-level geolocation to observe non-breeding behaviour. Among successful breeders, fed kittiwakes departed the colony earlier than unfed controls. Fed kittiwakes travelled less than controls during the breeding season, contracting their non-breeding range. Our results demonstrate that food supply during the breeding season affects non-breeding phenology, movement and distribution, providing a potential behavioural mechanism underlying observed survival costs of reproduction.


Asunto(s)
Charadriiformes , Alaska , Animales , Cruzamiento , Abastecimiento de Alimentos , Islas , Reproducción , Estaciones del Año
18.
Artículo en Inglés | MEDLINE | ID: mdl-31676409

RESUMEN

Point-of-care devices offer the potential to democratize a suite of physiological endpoints and assess the nutritional state of wild animals through plasma metabolite profiling. Measurements of plasma metabolites typically occur on frozen tissue in the laboratory, thus dissociating measurements from field observations. Point-of-care devices, widely used in veterinary and human medicine, provide rapid results (seconds or minutes) allowing in situ measurements of wild animals in remote areas without the need for access to freezers. Using point-of-care devices, we measured glucose, triglyceride, cholesterol and ß-hydroxybutyrate levels in plasma from 18 wild bird species spanning nine families and three orders. The values from six different point-of-care devices correlated strongly with one another, and with traditional laboratory measurements from stored plasma (R2 = 0.70-0.90). Although POC devices provided accurate relative values in wild birds, absolute values varied from laboratory measurements by up to 50% illustrating the need for calibration equations. Furthermore, three case studies showed the potential for point-of-care devices at research stations where participants do not have access to a lab and sample preservation is difficult: (i) at a remote seabird colony, birds that were provided with supplemental food had higher levels of glucose and lower ß-hydroxybutyrate and cholesterol levels than unfed birds, suggesting they were in a better nutritional state; (ii) at a migration monitoring station, levels of triglycerides of two migratory songbirds increased with time of day, implying that they were fattening during stopover; and (iii) for diving seabirds, individuals that worked harder (shorter surface intervals) had higher glucose and lower ß-hydroxybutyrate implying that nutritional state is an index of foraging effort and success. We demonstrate that point-of-care devices, once validated, can provide accurate measurements of the nutritional state of wild birds. Such real-time measurements can aid in ecological research and monitoring, care of wildlife at rehabilitation centres, and in veterinary medicine of exotics.


Asunto(s)
Ácido 3-Hidroxibutírico/sangre , Aves/metabolismo , Colesterol/sangre , Glucosa/análisis , Estado Nutricional , Sistemas de Atención de Punto/normas , Triglicéridos/sangre , Animales , Metaboloma
19.
J Exp Biol ; 222(Pt 21)2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31624096

RESUMEN

Endothermic animals regulate body temperature by balancing metabolic heat production and heat exchange with the environment. Heat dissipation is especially important during and immediately after demanding activities such as flapping flight, the most energetically expensive mode of locomotion. As uninsulated appendages, bird bills present a potential avenue for efficient heat dissipation. Puffins possess large bills and are members of the bird family with the highest known flight cost. Here, we used infrared thermography to test whether wild tufted puffins (Fratercula cirrhata) use their bills to dissipate excess heat after energetically expensive flight. Both bill surface temperature and the proportion of total heat exchange occurring at the bill decreased with time since landing, suggesting that bills are used to dissipate excess metabolic heat. We propose that bill size in puffins may be shaped by opposing selective pressures that include dissipating heat after flight and conserving heat in cold air and water temperatures.


Asunto(s)
Pico/fisiología , Regulación de la Temperatura Corporal , Charadriiformes/fisiología , Animales , Pico/anatomía & histología , Charadriiformes/anatomía & histología , Metabolismo Energético , Vuelo Animal , Calor
20.
J Exp Biol ; 222(Pt 18)2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31488626

RESUMEN

In birds, many physiological parameters appear to remain constant with increasing age, showing no deterioration until 'catastrophic' mortality sets in. Given their high whole-organism metabolic rate and the importance of flight in foraging and predator avoidance, flight muscle deterioration and accumulated oxidative stress and tissue deterioration may be an important contributor to physiological senescence in wild birds. As a by-product of aerobic respiration, reactive oxygen species are produced and can cause structural damage within cells. The anti-oxidant system deters oxidative damage to macromolecules. We examined oxidative stress and muscle ultrastructure in thick-billed murres aged 8 to 37 years (N=50) in pectoralis muscle biopsies. When considered in general linear models with body mass, body size and sex, no oxidative stress parameter varied with age. In contrast, there was a decrease in myonuclear domain similar to that seen in human muscle aging. We conclude that for wild birds with very high flight activity levels, muscle ultrastructural changes may be an important contributor to demographic senescence. Such gradual, linear declines in muscle morphology may eventually contribute to 'catastrophic' failure in foraging or predator avoidance abilities, leading to demographic senescence.


Asunto(s)
Envejecimiento/fisiología , Charadriiformes/fisiología , Músculo Esquelético/ultraestructura , Músculos/ultraestructura , Animales , Tamaño Corporal , Peso Corporal , Núcleo Celular/ultraestructura , Femenino , Masculino , Músculo Esquelético/química , Músculos/química , Estrés Oxidativo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA