Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Planta ; 251(3): 60, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32030477

RESUMEN

MAIN CONCLUSION: The phosphorylation status of MYB75 at T-131 affects protein stability, flavonoid profiles, and patterns of gene expression. The Arabidopsis transcription factor Myeloblastosis protein 75 (MYB75, AT1G56650) is known to act as a positive transcriptional regulator of genes required for flavonoid and anthocyanin biosynthesis. MYB75 was also shown to negatively regulate lignin and other secondary cell wall biosynthetic genes (Bhargava et al. in Plant Physiol 154(3):1428-1438, 2010). While transcriptional regulation of MYB75 has been described in numerous publications, little is known about post-translational control of MYB75 protein function. In a recent publication, light-induced activation of a MAP kinase (MPK4, AT4G01370) in Arabidopsis was reported to lead to MYB75 phosphorylation at two canonical MPK target sites, threonines, T-126 and T-131. This double phosphorylation event positively influenced MYB75 protein stability (Li et al. in Plant Cell 28(11):2866-2883, 2016). We have examined this phenomenon through use of phosphomutant forms of MYB75 and found that MYB75 is phosphorylated primarily at T-131, and that the phosphorylation of MYB75 recombinant protein in vitro can be catalyzed by multiple MAP kinases, including MPK3 (AT3G45640), MPK6 (AT2G43790), MPK4 and MPK11 (AT1G01560). We also demonstrate that MYB75 can bind to a large number of Arabidopsis MPK's in vitro, suggesting it could be a target of multiple signalling pathways. The impact of MYB75 phosphorylation at T-131 on the function of this transcription factor, in terms of localization, stability, and protein-protein interactions with known binding partners was examined in transgenic lines expressing phosphomimic and phosphonull versions of MYB75, to capture the behaviour of permanently phosphorylated and unphosphorylated MYB75 protein, respectively. In addition, we describe how ectopic over-expression of different phosphovariant forms of MYB75 (MYB75WT, MYB75T131A, and MYB75T131E) affects flavonoid biochemical profiles and global changes of gene expression in the corresponding transgenic Arabidopsis plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Antocianinas/biosíntesis , Antocianinas/química , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Vías Biosintéticas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Luz , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Plantas Modificadas Genéticamente , Unión Proteica/efectos de los fármacos , Unión Proteica/efectos de la radiación , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/efectos de la radiación , Sacarosa/farmacología , Factores de Transcripción/genética
2.
BMC Genomics ; 19(1): 178, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29506469

RESUMEN

BACKGROUND: The mitogen-activated protein kinase (MAPK) family is involved in signal transduction networks that underpin many different biological processes in plants, ranging from development to biotic and abiotic stress responses. To date this class of enzymes has received little attention in Triticeae species, which include important cereal crops (wheat, barley, rye and triticale) that represent over 20% of the total protein food-source worldwide. RESULTS: The work presented here focuses on two subfamilies of Triticeae MAPKs, the MAP kinases (MPKs), and the MAPK kinases (MKKs) whose members phosphorylate the MPKs. In silico analysis of multiple Triticeae sequence databases led to the identification of 152 MAPKs belonging to these two sub-families. Some previously identified MAPKs were renamed to reflect the literature consensus on MAPK nomenclature. Two novel MPKs, MPK24 and MPK25, have been identified, including the first example of a plant MPK carrying the TGY activation loop sequence common to mammalian p38 MPKs. An EF-hand calcium-binding domain was found in members of the Triticeae MPK17 clade, a feature that appears to be specific to Triticeae species. New insights into the novel MEY activation loop identified in MPK11s are offered. When the exon-intron patterns for some MPKs and MKKs of wheat, barley and ancestors of wheat were assembled based on transcript data in GenBank, they showed deviations from the same sequence predicted in Ensembl. The functional relevance of MAPKs as derived from patterns of gene expression, MPK activation and MKK-MPK interaction is discussed. CONCLUSIONS: A comprehensive resource of accurately annotated and curated Triticeae MPK and MKK sequences has been created for wheat, barley, rye, triticale, and two ancestral wheat species, goat grass and red wild einkorn. The work we present here offers a central information resource that will resolve existing confusion in the literature and sustain expansion of MAPK research in the crucial Triticeae grains.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Lolium/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Triticum/genética , Secuencia de Aminoácidos , Biología Computacional , Bases de Datos Factuales , Genoma de Planta , Hordeum/metabolismo , Lolium/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Familia de Multigenes , Filogenia , Alineación de Secuencia , Triticum/metabolismo
3.
Plant Physiol ; 173(2): 1059-1074, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28003327

RESUMEN

Plant cell wall proteins are important regulators of cell wall architecture and function. However, because cell wall proteins are difficult to extract and analyze, they are generally poorly understood. Here, we describe the identification and characterization of proteins integral to the Arabidopsis (Arabidopsis thaliana) seed coat mucilage, a specialized layer of the extracellular matrix composed of plant cell wall carbohydrates that is used as a model for cell wall research. The proteins identified in mucilage include those previously identified by genetic analysis, and several mucilage proteins are reduced in mucilage-deficient mutant seeds, suggesting that these proteins are genuinely associated with the mucilage. Arabidopsis mucilage has both nonadherent and adherent layers. Both layers have similar protein profiles except for proteins involved in lipid metabolism, which are present exclusively in the adherent mucilage. The most abundant mucilage proteins include a family of proteins named TESTA ABUNDANT1 (TBA1) to TBA3; a less abundant fourth homolog was named TBA-LIKE (TBAL). TBA and TBAL transcripts and promoter activities were detected in developing seed coats, and their expression requires seed coat differentiation regulators. TBA proteins are secreted to the mucilage pocket during differentiation. Although reverse genetics failed to identify a function for TBAs/TBAL, the TBA promoters are highly expressed and cell type specific and so should be very useful tools for targeting proteins to the seed coat epidermis. Altogether, these results highlight the mucilage proteome as a model for cell walls in general, as it shares similarities with other cell wall proteomes while also containing mucilage-specific features.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Mucílago de Planta/metabolismo , Semillas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Pared Celular/metabolismo , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas , Epidermis de la Planta/metabolismo , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Plant Cell ; 24(4): 1327-51, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22517321

RESUMEN

Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved proteins that function as key signal transduction components in fungi, plants, and mammals. During interaction between phytopathogenic fungi and plants, fungal MAPKs help to promote mechanical and/or enzymatic penetration of host tissues, while plant MAPKs are required for activation of plant immunity. However, new insights suggest that MAPK cascades in both organisms do not operate independently but that they mutually contribute to a highly interconnected molecular dialogue between the plant and the fungus. As a result, some pathogenesis-related processes controlled by fungal MAPKs lead to the activation of plant signaling, including the recruitment of plant MAPK cascades. Conversely, plant MAPKs promote defense mechanisms that threaten the survival of fungal cells, leading to a stress response mediated in part by fungal MAPK cascades. In this review, we make use of the genomic data available following completion of whole-genome sequencing projects to analyze the structure of MAPK protein families in 24 fungal taxa, including both plant pathogens and mycorrhizal symbionts. Based on conserved patterns of sequence diversification, we also propose the adoption of a unified fungal MAPK nomenclature derived from that established for the model species Saccharomyces cerevisiae. Finally, we summarize current knowledge of the functions of MAPK cascades in phytopathogenic fungi and highlight the central role played by MAPK signaling during the molecular dialogue between plants and invading fungal pathogens.


Asunto(s)
Secuencia Conservada/genética , Hongos/enzimología , Interacciones Huésped-Patógeno , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Plantas/microbiología , Hongos/genética , Proteínas Quinasas Activadas por Mitógenos/clasificación , Proteínas Quinasas Activadas por Mitógenos/genética
5.
Plant J ; 74(1): 134-47, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23294247

RESUMEN

The Arabidopsis inflorescence stem undergoes rapid directional growth, requiring massive axial cell-wall extension in all its tissues, but, at maturity, these tissues are composed of cell types that exhibit markedly different cell-wall structures. It is not clear whether the cell-wall compositions of these cell types diverge rapidly following axial growth cessation, or whether compositional divergence occurs at earlier stages in differentiation, despite the common requirement for cell-wall extensibility. To examine this question, seven cell types were assayed for the abundance and distribution of 18 major cell-wall glycan classes at three developmental stages along the developing inflorescence stem, using a high-throughput immunolabelling strategy. These stages represent a phase of juvenile growth, a phase displaying the maximum rate of stem extension, and a phase in which extension growth is ceasing. The immunolabelling patterns detected demonstrate that the cell-wall composition of most stem tissues undergoes pronounced changes both during and after rapid extension growth. Hierarchical clustering of the immunolabelling signals identified cell-specific binding patterns for some antibodies, including a sub-group of arabinogalactan side chain-directed antibodies whose epitope targets are specifically associated with the inter-fascicular fibre region during the rapid cell expansion phase. The data reveal dynamic, cell type-specific changes in cell-wall chemistry across diverse cell types during cell-wall expansion and maturation in the Arabidopsis inflorescence stem, and highlight the paradox between this structural diversity and the uniform anisotropic cell expansion taking place across all tissues during stem growth.


Asunto(s)
Arabidopsis/citología , Pared Celular/metabolismo , Epítopos/análisis , Tallos de la Planta/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Análisis por Conglomerados , Inmunohistoquímica , Inflorescencia/citología , Inflorescencia/crecimiento & desarrollo , Tallos de la Planta/citología
6.
Planta ; 237(5): 1199-211, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23328896

RESUMEN

The Arabidopsis thaliana KNAT7 (KNOX family) and MYB75 (MYB family) transcription factors were each shown earlier to interact in yeast two-hybrid assays, and to modulate secondary cell wall formation in inflorescence stems. We demonstrate here that their interaction also occurs in vivo, and that specific domains of each protein mediate this process. The participation of these interacting transcription factors in secondary cell wall formation was then extended to the developing seed coat through the use of targeted transcript analysis and SEM in single loss-of-function mutants. Novel genetic and protein-protein interactions of MYB75 and KNAT7 with other transcription factors known to be involved in seed coat regulation were also identified. We propose that a MYB75-associated protein complex is likely to be involved in modulating secondary cell wall biosynthesis in both the Arabidopsis inflorescence stem and seed coat, and that at least some parts of the transcriptional regulatory network in the two tissues are functionally conserved.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Tallos de la Planta/metabolismo , Semillas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pared Celular/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Tallos de la Planta/genética , Semillas/genética , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
7.
New Phytol ; 200(1): 158-171, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23731343

RESUMEN

SGT1 (Suppressor of G2 allele of SKP1) is required to maintain plant disease Resistance (R) proteins with Nucleotide-Binding (NB) and Leucine-Rich Repeat (LRR) domains in an inactive but signaling-competent state. SGT1 is an integral component of a multi-protein network that includes RACK1, Rac1, RAR1, Rboh, HSP90 and HSP70, and in rice the Mitogen-Activated Protein Kinase (MAPK), OsMAPK6. Tobacco (Nicotiana tabacum) N protein, which belongs to the Toll-Interleukin Receptor (TIR)-NB-LRR class of R proteins, confers resistance to Tobacco Mosaic Virus (TMV). Following transient expression in planta, we analyzed the functional relationship between SGT1, SIPK - a tobacco MAPK6 ortholog - and N, using mass spectrometry, confocal microscopy and pathogen assays. Here, we show that tobacco SGT1 undergoes specific phosphorylation in a canonical MAPK target-motif by SIPK. Mutation of this motif to mimic SIPK phosphorylation leads to an increased proportion of cells displaying SGT1 nuclear accumulation and impairs N-mediated resistance to TMV, as does phospho-null substitution at the same residue. Forced nuclear localization of SGT1 causes N to be confined to nuclei. Our data suggest that one mode of regulating nucleocytoplasmic partitioning of R proteins is by maintaining appropriate levels of SGT1 phosphorylation catalyzed by plant MAPK.


Asunto(s)
Núcleo Celular , Resistencia a la Enfermedad , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Nicotiana/fisiología , Enfermedades de las Plantas/virología , Proteínas de Plantas/metabolismo , Virus del Mosaico del Tabaco , Fosforilación , Transducción de Señal , Nicotiana/metabolismo , Nicotiana/virología
8.
Biochem J ; 446(2): e5-7, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23066531

RESUMEN

Plants contain hundreds of protein kinases that are believed to provide cellular signal transduction services, but the identities of the proteins they are targeting are largely unknown. Using an Arabidopsis MAPK (mitogen-activated protein kinase) (MPK6) as a model, Sörensson et al. describe in this issue of the Biochemical Journal how arrayed combinatorial peptide scanning offers an efficient route to discovery of new potential kinase substrates.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Péptidos/química , Péptidos/metabolismo
9.
Plant J ; 67(5): 895-906, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21575092

RESUMEN

Mitogen-activated protein kinase (MAPK) cascades have been implicated in regulating various aspects of plant development, including somatic cytokinesis. The evolution of expanded plant MAPK gene families has enabled the diversification of potential MAPK cascades, but functionally overlapping components are also well documented. Here we report that Arabidopsis MPK4, an MAPK that was previously described as a regulator of disease resistance, can interact with and be phosphorylated by the cytokinesis-related MAP kinase kinase, AtMKK6. In mpk4 mutant plants, anthers can develop normal microspore mother cells (MMCs) and peripheral supporting tissues, but the MMCs fail to form a normal intersporal callose wall after male meiosis, and thus cannot complete meiotic cytokinesis. Nevertheless, the multinucleate mpk4 microspores subsequently proceed through mitotic cytokinesis, resulting in enlarged mature pollen grains that possess increased sets of the tricellular structure. This pollen development phenotype is reminiscent of those observed in both atnack2/tes/stud and anq1/mkk6 mutants, and protein-protein interaction analysis defines a putative signalling module linking AtNACK2/TES/STUD, AtANP3, AtMKK6 and AtMPK4 together as a cascade that facilitates male-specific meiotic cytokinesis in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Citocinesis/fisiología , MAP Quinasa Quinasa 6/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Polen/fisiología , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , ADN Complementario/genética , Regulación de la Expresión Génica de las Plantas/fisiología , MAP Quinasa Quinasa 6/genética , Meiosis , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Fenotipo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Plantas Modificadas Genéticamente/ultraestructura , Polen/enzimología , Polen/genética , Polen/ultraestructura , Regiones Promotoras Genéticas/genética , ARN de Planta/genética , Proteínas Recombinantes de Fusión , Técnicas del Sistema de Dos Híbridos
10.
New Phytol ; 194(1): 102-115, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22236040

RESUMEN

• The formation of secondary cell walls in cell types such as tracheary elements and fibers is a defining characteristic of vascular plants. The Arabidopsis transcription factor KNAT7 is a component of a transcription network that regulates secondary cell wall biosynthesis, but its function has remained unclear. • We conducted anatomical, biochemical and molecular phenotypic analyses of Arabidopsis knat7 loss-of-function alleles, KNAT7 over-expression lines and knat7 lines expressing poplar KNAT7. • KNAT7 was strongly expressed in concert with secondary wall formation in Arabidopsis and poplar. Arabidopsis knat7 loss-of-function alleles exhibited irregular xylem phenotypes, but also showed increased secondary cell wall thickness in fibers. Increased commitment to secondary cell wall biosynthesis was accompanied by increased lignin content and elevated expression of secondary cell wall biosynthetic genes. KNAT7 over-expression resulted in thinner interfascicular fiber cell walls. • Taken together with data demonstrating that KNAT7 is a transcriptional repressor, we hypothesize that KNAT7 is a negative regulator of secondary wall biosynthesis, and functions in a negative feedback loop that represses metabolically inappropriate commitment to secondary wall formation, thereby maintaining metabolic homeostasis. The conservation of the KNAT7 regulatory module in poplar suggests new ways to manipulate secondary cell wall deposition for improvement of bioenergy traits in this tree.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/citología , Arabidopsis/genética , Pared Celular/metabolismo , Secuencia Conservada , Genes de Plantas/genética , Populus/genética , Proteínas Represoras/genética , Alelos , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Pared Celular/ultraestructura , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Glucuronidasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Inflorescencia/metabolismo , Inflorescencia/ultraestructura , Lignina/metabolismo , Mutagénesis Insercional/genética , Mutación/genética , Fenotipo , Filogenia , Tallos de la Planta/anatomía & histología , Tallos de la Planta/metabolismo , Tallos de la Planta/ultraestructura , Plantas Modificadas Genéticamente , Transporte de Proteínas , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/metabolismo , Homología de Secuencia de Aminoácido
11.
Plant Physiol ; 155(1): 370-83, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21098678

RESUMEN

Earlier studies have shown that RACK1 functions as a negative regulator of abscisic acid (ABA) responses in Arabidopsis (Arabidopsis thaliana), but the molecular mechanism of the action of RACK1 in these processes remains elusive. Global gene expression profiling revealed that approximately 40% of the genes affected by ABA treatment were affected in a similar manner by the rack1 mutation, supporting the view that RACK1 is an important regulator of ABA responses. On the other hand, coexpression analysis revealed that more than 80% of the genes coexpressed with RACK1 encode ribosome proteins, implying a close relationship between RACK1's function and the ribosome complex. These results implied that the regulatory role for RACK1 in ABA responses may be partially due to its putative function in protein translation, which is one of the major cellular processes that mammalian and Saccharomyces cerevisiae RACK1 is involved in. Consistently, all three Arabidopsis RACK1 homologous genes, namely RACK1A, RACK1B, and RACK1C, complemented the growth defects of the S. cerevisiae cross pathway control2/rack1 mutant. In addition, RACK1 physically interacts with Arabidopsis Eukaryotic Initiation Factor6 (eIF6), whose mammalian homolog is a key regulator of 80S ribosome assembly. Moreover, rack1 mutants displayed hypersensitivity to anisomycin, an inhibitor of protein translation, and displayed characteristics of impaired 80S functional ribosome assembly and 60S ribosomal subunit biogenesis in a ribosome profiling assay. Gene expression analysis revealed that ABA inhibits the expression of both RACK1 and eIF6. Taken together, these results suggest that RACK1 may be required for normal production of 60S and 80S ribosomes and that its action in these processes may be regulated by ABA.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Receptores de Superficie Celular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Alelos , Anisomicina/farmacología , Arabidopsis/genética , Factores Eucarióticos de Iniciación/química , Proteínas de Unión al GTP/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Prueba de Complementación Genética , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica/efectos de los fármacos , Receptores de Cinasa C Activada , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
12.
Plant Cell ; 21(11): 3506-17, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19897669

RESUMEN

Mitogen-activated protein kinase (MAPK) signaling networks regulate numerous eukaryotic biological processes. In Arabidopsis thaliana, signaling networks that contain MAPK kinases MKK4/5 and MAPKs MPK3/6 function in abiotic and biotic stress responses and regulate embryonic and stomatal development. However, how single MAPK modules direct specific output signals without cross-activating additional downstream processes is largely unknown. Studying relationships between MAPK components and downstream signaling outcomes is difficult because broad experimental manipulation of these networks is often lethal or associated with multiple phenotypes. Stomatal development in Arabidopsis follows a series of discrete, stereotyped divisions and cell state transitions. By expressing a panel of constitutively active MAPK kinase (MAPKK) variants in discrete stomatal lineage cell types, we identified a new inhibitory function of MKK4 and MKK5 in meristemoid self-renewal divisions. Furthermore, we established roles for MKK7 and MKK9 as both negative and (unexpectedly) positive regulators during the major stages of stomatal development. This has expanded the number of known MAPKKs that regulate stomatal development and allowed us to build plausible and testable subnetworks of signals. This in vivo cell type-specific assay can be adapted to study other protein families and thus may reveal insights into other complex signal transduction pathways in plants.


Asunto(s)
Arabidopsis/genética , Diferenciación Celular/genética , Linaje de la Célula/genética , Regulación de la Expresión Génica de las Plantas/genética , Sistema de Señalización de MAP Quinasas/genética , Estomas de Plantas/genética , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bioensayo/métodos , Tipificación del Cuerpo/genética , División Celular/genética , Proliferación Celular , Regulación Enzimológica de la Expresión Génica/genética , Inhibidores de Crecimiento/genética , Inhibidores de Crecimiento/metabolismo , MAP Quinasa Quinasa 7/genética , MAP Quinasa Quinasa 7/metabolismo , Meristema/enzimología , Meristema/genética , Meristema/crecimiento & desarrollo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estomas de Plantas/enzimología , Estomas de Plantas/crecimiento & desarrollo
13.
Proc Natl Acad Sci U S A ; 106(48): 20520-5, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19910530

RESUMEN

Reactive oxygen species (ROS) mediate abscisic acid (ABA) signaling in guard cells. To dissect guard cell ABA-ROS signaling genetically, a cell type-specific functional genomics approach was used to identify 2 MAPK genes, MPK9 and MPK12, which are preferentially and highly expressed in guard cells. To provide genetic evidence for their function, Arabidopsis single and double TILLING mutants that carry deleterious point mutations in these genes were isolated. RNAi-based gene-silencing plant lines, in which both genes are silenced simultaneously, were generated also. Mutants carrying a mutation in only 1 of these genes did not show any altered phenotype, indicating functional redundancy in these genes. ABA-induced stomatal closure was strongly impaired in 2 independent RNAi lines in which both MPK9 and MPK12 transcripts were significantly silenced. Consistent with this result, mpk9-1/12-1 double mutants showed an enhanced transpirational water loss and ABA- and H(2)O(2)-insensitive stomatal response. Furthermore, ABA and calcium failed to activate anion channels in guard cells of mpk9-1/12-1, indicating that these 2 MPKs act upstream of anion channels in guard cell ABA signaling. An MPK12-YFP fusion construct rescued the ABA-insensitive stomatal response phenotype of mpk9-1/12-1, demonstrating that the phenotype was caused by the mutations. The MPK12 protein is localized in the cytosol and the nucleus, and ABA and H(2)O(2) treatments enhance the protein kinase activity of MPK12. Together, these results provide genetic evidence that MPK9 and MPK12 function downstream of ROS to regulate guard cell ABA signaling positively.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estomas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Western Blotting , Calcio/metabolismo , Inmunoprecipitación , Microscopía Confocal , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación/genética , Estomas de Plantas/citología , Interferencia de ARN , Transducción de Señal/genética
14.
Plant Physiol ; 154(3): 1428-38, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20807862

RESUMEN

Deposition of lignified secondary cell walls in plants involves a major commitment of carbon skeletons in both the form of polysaccharides and phenylpropanoid constituents. This process is spatially and temporally regulated by transcription factors, including a number of MYB family transcription factors. MYB75, also called PRODUCTION OF ANTHOCYANIN PIGMENT1, is a known regulator of the anthocyanin branch of the phenylpropanoid pathway in Arabidopsis (Arabidopsis thaliana), but how this regulation might impact other aspects of carbon metabolism is unclear. We established that a loss-of-function mutation in MYB75 (myb75-1) results in increased cell wall thickness in xylary and interfascicular fibers within the inflorescence stem. The total lignin content and S/G ratio of the lignin monomers were also affected. Transcript profiles from the myb75-1 inflorescence stem revealed marked up-regulation in the expression of a suite of genes associated with lignin biosynthesis and cellulose deposition, as well as cell wall modifying proteins and genes involved in photosynthesis and carbon assimilation. These patterns suggest that MYB75 acts as a repressor of the lignin branch of the phenylpropanoid pathway. Since MYB75 physically interacts with another secondary cell wall regulator, the KNOX transcription factor KNAT7, these regulatory proteins may form functional complexes that contribute to the regulation of secondary cell wall deposition in the Arabidopsis inflorescence stem and that integrate the metabolic flux through the lignin, flavonoid, and polysaccharide pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Pared Celular/metabolismo , Tallos de la Planta/citología , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Inflorescencia/citología , Lignina/biosíntesis , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN de Planta/genética , Factores de Transcripción/genética , Activación Transcripcional
15.
Trends Plant Sci ; 14(5): 248-54, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19375973

RESUMEN

Cellulose synthase (CesA) is a central catalyst in the generation of the plant cell wall biomass and is, therefore, the focus of intense research. Characterization of individual CesA genes from Populus species has led to the publication of several different naming conventions for CesA gene family members in this model tree. To help reduce the resulting confusion, we propose here a new phylogeny-based CesA nomenclature that aligns the Populus CesA gene family with the established Arabidopsis thaliana CesA family structure.


Asunto(s)
Glucosiltransferasas/genética , Populus/enzimología , Terminología como Asunto , Filogenia , Proteínas de Plantas/clasificación
16.
Plant Signal Behav ; 16(1): 1836454, 2021 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-33100126

RESUMEN

The Arabidopsis transcription factor Myeloblastosis protein 75 (MYB75, AT1G56650) is a well-established transcriptional activator of genes required for anthocyanin and flavonoid production, and a repressor of lignin and other secondary cell wall biosynthesis genes. MYB75 is itself tightly regulated at the transcriptional, translational and post-translational levels, including protein phosphorylation by Arabidopsis MAP kinases Examination of the behavior of different phosphovariant versions of MYB75 in vitro and in vivo revealed that overexpression of the MYB75T131E phosphovariant had a particularly marked effect on global changes in gene expression suggesting that phosphorylated MYB75 could be involved in a broader range of functions than previously recognized. Here, we describe a range of distinct developmental phenotypes observed among Arabidopsis lines expressing various phosphovariant forms of MYB75. Expression of either MYB75T131E or MYB75T131A phosphovariants, from the endogenous MYB75 promoter, in Arabidopsis myb75- mutants (Nossen background), resulted in severely impaired germination rates, and developmental arrest at early seedling stages. Arabidopsis plants overexpressing MYB75T131E from a strong constitutive Cauliflower mosaic virus (CaMV35S) promoter displayed slower development, with delayed bolting, flowering and onset of senescence. Conversely, MYB75T131A -overexpressing lines flowered and set seed earlier than either Col-0 WT controls or other MYB75-overexpressors (MYB75WT and MYB75T131E ). Histochemical analysis of mature stems also revealed ectopic vessel development in plants overexpressing MYB75; this phenotype was particularly prominent in the MYB75T131E phosphovariant. These data suggest that MYB75 plays a significant role in plant development, and that this aspect of MYB75 function is influenced by its phosphorylation status.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Germinación/genética , Germinación/fisiología , Proteínas Quinasas Activadas por Mitógenos/genética
17.
Plant J ; 57(6): 975-85, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19000167

RESUMEN

Mitogen-activated protein kinase (MAPK) phosphatases are important negative regulators in the MAPK signaling pathways responsible for many essential processes in plants, including development, stress management and hormonal responses. A mutation in INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5), which is predicted to encode a dual-specificity MAPK phosphatase, was previously reported to confer reduced sensitivity to auxin and ABA in Arabidopsis roots. To further characterize IBR5, and to understand how it might help integrate MAPK cascades with hormone signaling, we searched for IBR5-interacting MAPKs. Yeast two-hybrid assays, in vitro binding assays and in vivo protein co-immunoprecipitation studies demonstrated that MPK12 and IBR5 are physically coupled. The C-terminus of MPK12 appears to be essential for its interaction with IBR5, and in vitro dephosphorylation and immunocomplex kinase assays indicated that activated MPK12 is efficiently dephosphorylated and inactivated by IBR5. MPK12 and IBR5 mRNAs are both widely expressed across Arabidopsis tissues, and at the subcellular level each protein is predominantly localized in the nucleus. In transgenic plants with reduced expression of the MPK12 gene, root growth is hypersensitive to exogenous auxins, but shows normal ABA sensitivity. MPK12 suppression in an ibr5 background partially complements the ibr5 auxin-insensitivity phenotype. Our results demonstrate that IBR5 is a bona fide MAPK phosphatase, and suggest that MPK12 is both a physiological substrate of IBR5 and a novel negative regulator of auxin signaling in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Fosfatasas de Especificidad Dual/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fosfatasas de Especificidad Dual/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas Activadas por Mitógenos/genética , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , ARN de Planta/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Técnicas del Sistema de Dos Híbridos
18.
Trends Plant Sci ; 11(4): 192-8, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16537113

RESUMEN

MAPK signal transduction modules play crucial roles in regulating many biological processes in plants, and their components are encoded by highly conserved genes. The recent availability of genome sequences for rice and poplar now makes it possible to examine how well the previously described Arabidopsis MAPK and MAPKK gene family structures represent the broader evolutionary situation in plants, and analysis of gene expression data for MPK and MKK genes in all three species allows further refinement of those families, based on functionality. The Arabidopsis MAPK nomenclature appears sufficiently robust to allow it to be usefully extended to other well-characterized plant systems.


Asunto(s)
Proteínas de Arabidopsis/clasificación , Arabidopsis/enzimología , Genoma de Planta , Quinasas de Proteína Quinasa Activadas por Mitógenos/clasificación , Proteínas Quinasas Activadas por Mitógenos/clasificación , Familia de Multigenes , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Genómica , Sistema de Señalización de MAP Quinasas/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Filogenia , Terminología como Asunto
20.
BMC Genomics ; 7: 223, 2006 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-16945144

RESUMEN

BACKGROUND: As in other eukaryotes, plant mitogen-activated protein kinase (MAPK) cascades are composed of three classes of hierarchically organized protein kinases, namely MAPKKKs, MAPKKs, and MAPKs. These modules rapidly amplify and transduce extracellular signals into various appropriate intracellular responses. While extensive work has been conducted on the post-translational regulation of specific MAPKKs and MAPKs in various plant species, there has been no systematic investigation of the genomic organization and transcriptional regulation of these genes. RESULTS: Ten putative poplar MAPKK genes (PtMKKs) and 21 putative poplar MAPK genes (PtMPKs) have been identified and located within the poplar (Populus trichocarpa) genome. Analysis of exon-intron junctions and of intron phase inside the predicted coding region of each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Expression profiles of all members of these two gene families were also analyzed in 17 different poplar organs, using gene-specific primers directed at the 3'-untranslated region of each candidate gene and real-time quantitative PCR. Most PtMKKs and PtMPKs were differentially expressed across this developmental series. CONCLUSION: This analysis provides a complete survey of MAPKK and MAPK gene expression profiles in poplar, a large woody perennial plant, and thus complements the extensive expression profiling data available for the herbaceous annual Arabidopsis thaliana. The poplar genome is marked by extensive segmental and chromosomal duplications, and within both kinase families, some recently duplicated paralogous gene pairs often display markedly different patterns of expression, consistent with the rapid evolution of specialized protein functions in this highly adaptive species.


Asunto(s)
Perfilación de la Expresión Génica , Genoma de Planta/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Populus/genética , Regiones no Traducidas 3'/genética , Cromosomas de las Plantas/genética , Exones/genética , Regulación Enzimológica de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Intrones/genética , Modelos Genéticos , Proteínas de Plantas/genética , Estructuras de las Plantas/enzimología , Estructuras de las Plantas/genética , Populus/enzimología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA