Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Mol Cell Cardiol ; 187: 101-117, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38331556

RESUMEN

AIMS: The sympathetic nervous system regulates numerous critical aspects of mitochondrial function in the heart through activation of adrenergic receptors (ARs) on cardiomyocytes. Mounting evidence suggests that α1-ARs, particularly the α1A subtype, are cardioprotective and may mitigate the deleterious effects of chronic ß-AR activation by shared ligands. The mechanisms underlying these adaptive effects remain unclear. Here, we tested the hypothesis that α1A-ARs adaptively regulate cardiomyocyte oxidative metabolism in both the uninjured and infarcted heart. METHODS: We used high resolution respirometry, fatty acid oxidation (FAO) enzyme assays, substrate-specific electron transport chain (ETC) enzyme assays, transmission electron microscopy (TEM) and proteomics to characterize mitochondrial function comprehensively in the uninjured hearts of wild type and α1A-AR knockout mice and defined the effects of chronic ß-AR activation and myocardial infarction on selected mitochondrial functions. RESULTS: We found that isolated cardiac mitochondria from α1A-KO mice had deficits in fatty acid-dependent respiration, FAO, and ETC enzyme activity. TEM revealed abnormalities of mitochondrial morphology characteristic of these functional deficits. The selective α1A-AR agonist A61603 enhanced fatty-acid dependent respiration, fatty acid oxidation, and ETC enzyme activity in isolated cardiac mitochondria. The ß-AR agonist isoproterenol enhanced oxidative stress in vitro and this adverse effect was mitigated by A61603. A61603 enhanced ETC Complex I activity and protected contractile function following myocardial infarction. CONCLUSIONS: Collectively, these novel findings position α1A-ARs as critical regulators of cardiomyocyte metabolism in the basal state and suggest that metabolic mechanisms may underlie the protective effects of α1A-AR activation in the failing heart.


Asunto(s)
Contracción Miocárdica , Infarto del Miocardio , Animales , Ratones , Ácidos Grasos/metabolismo , Ratones Noqueados , Mitocondrias/metabolismo , Infarto del Miocardio/metabolismo , Estrés Oxidativo , Receptores Adrenérgicos alfa 1/metabolismo
2.
J Neurochem ; 165(3): 379-390, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36815399

RESUMEN

Dietary lipids, particularly omega-3 polyunsaturated fatty acids, are speculated to impact behaviors linked to the dopaminergic system, such as movement and control of circadian rhythms. However, the ability to draw a direct link between dopaminergic omega-3 fatty acid metabolism and behavioral outcomes has been limited to the use of diet-based approaches, which are confounded by systemic effects. Here, neuronal lipid metabolism was targeted in a diet-independent manner by manipulation of long-chain acyl-CoA synthetase 6 (ACSL6) expression. ACSL6 performs the initial reaction for cellular fatty acid metabolism and prefers the omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA). The loss of Acsl6 in mice (Acsl6-/- ) depletes neuronal membranes of DHA content and results in phenotypes linked to dopaminergic control, such as hyperlocomotion, impaired short-term spatial memory, and imbalances in dopamine neurochemistry. To investigate the role of dopaminergic ACSL6 on these outcomes, a dopaminergic neuron-specific ACSL6 knockout mouse was generated (Acsl6DA-/- ). Acsl6DA-/- mice demonstrated hyperlocomotion and imbalances in striatal dopamine neurochemistry. Circadian rhythms of both the Acsl6-/- and the Acsl6DA-/- mice were similar to control mice under basal conditions. However, upon light entrainment, a mimetic of jet lag, both the complete knockout of ACSL6 and the dopaminergic-neuron-specific loss of ACSL6 resulted in a longer recovery to entrainment compared to control mice. In conclusion, these data demonstrate that ACSL6 in dopaminergic neurons alters dopamine metabolism and regulation of light entrainment suggesting that DHA metabolism mediated by ACSL6 plays a role in dopamine neuron biology.


Asunto(s)
Neuronas Dopaminérgicas , Metabolismo de los Lípidos , Ratones , Animales , Neuronas Dopaminérgicas/metabolismo , Dopamina , Grasas de la Dieta , Dieta , Ratones Noqueados , Ácidos Docosahexaenoicos/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo
3.
Am J Physiol Gastrointest Liver Physiol ; 325(4): G287-G294, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37461880

RESUMEN

Medium-chain fatty acid (MCFA) consumption confers a wide range of health benefits that are highly distinct from long-chain fatty acids (LCFAs). A major difference between the metabolism of LCFAs compared with MCFAs is that mitochondrial LCFA oxidation depends on the carnitine shuttle, whereas MCFA mitochondrial oxidation is not. Although MCFAs are said to range from 6 to 14 carbons long based on physicochemical properties in vitro, the biological cut-off length of acyl chains that can bypass the carnitine shuttle in different mammalian tissues is unknown. To define the range of acyl chain length that can be oxidized in the mitochondria independent of carnitine, we determined the oxidative metabolism of free fatty acids (FFAs) from 6 to 18 carbons long in the liver, kidney, heart, and skeletal muscle. The liver oxidized FFAs 6 to 14 carbons long, whereas the kidney oxidized FFAs from 6 to 10 carbons in length. Heart and skeletal muscle were unable to oxidize FFAs of any chain length. These data show that while the liver and kidney can oxidize MCFAs in the free form, the heart and skeletal muscle require carnitine for the oxidative metabolism of MCFAs. Together these data demonstrate that MCFA oxidation independent of carnitine is tissue-specific.NEW & NOTEWORTHY This work demonstrates that the traditional concept of mitochondrial medium-chain fatty acid oxidation as unregulated and independent of carnitine applies only to liver metabolism, and to kidney to a lesser extent, but not the heart or skeletal muscle. Thus, the benefits of dietary medium-chain fatty acids are set by liver metabolic activity and peripheral tissues are unlikely to receive direct benefits from medium-chain fatty acid metabolism, but rather metabolic byproducts of liver's medium-chain oxidative metabolism.


Asunto(s)
Carnitina , Ácidos Grasos , Animales , Carnitina/metabolismo , Ácidos Grasos/metabolismo , Oxidación-Reducción , Ácidos Grasos no Esterificados/metabolismo , Músculo Esquelético/metabolismo , Hígado/metabolismo , Riñón/metabolismo , Mamíferos/metabolismo
4.
J Biol Chem ; 297(1): 100830, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34048714

RESUMEN

Dietary lipid composition has been shown to impact brain morphology, brain development, and neurologic function. However, how diet uniquely regulates brain lipid homeostasis compared with lipid homeostasis in peripheral tissues remains largely uncharacterized. To evaluate the lipid response to dietary changes in the brain, we assessed actively translating mRNAs in astrocytes and neurons across multiple diets. From this data, ethanolamine phosphate phospholyase (Etnppl) was identified as an astrocyte-specific fasting-induced gene. Etnppl catabolizes phosphoethanolamine (PEtN), a prominent headgroup precursor in phosphatidylethanolamine (PE) also found in other classes of neurologically relevant lipid species. Altered Etnppl expression has also previously been associated with humans with mood disorders. We evaluated the relevance of Etnppl in maintaining brain lipid homeostasis by characterizing Etnppl across development and in coregulation with PEtN-relevant genes, as well as determining the impact to the brain lipidome after Etnppl loss. We found that Etnppl expression dramatically increased during a critical window of early brain development in mice and was also induced by glucocorticoids. Using a constitutive knockout of Etnppl (EtnpplKO), we did not observe robust changes in expression of PEtN-related genes. However, loss of Etnppl altered the phospholipid profile in the brain, resulting in increased total abundance of PE and in polyunsaturated fatty acids within PE and phosphatidylcholine species in the brain. Together, these data suggest that brain phospholipids are regulated by the phospholyase action of the enzyme Etnppl, which is induced by dietary fasting in astrocytes.


Asunto(s)
Astrocitos/metabolismo , Etanolaminas/metabolismo , Homeostasis , Metabolismo de los Lípidos , Liasas de Fósforo-Oxígeno/metabolismo , Animales , Astrocitos/efectos de los fármacos , Sistema Nervioso Central/citología , Dieta , Ayuno , Ácidos Grasos/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Homeostasis/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos de la Membrana/metabolismo , Ratones , Oxidación-Reducción , Consumo de Oxígeno/efectos de los fármacos , Fosfolípidos/metabolismo , Receptores de Glucocorticoides/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Especificidad por Sustrato/efectos de los fármacos
5.
Diabetes Obes Metab ; 24(1): 21-33, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34472674

RESUMEN

AIM: To compare the molecular and metabolic effects of a single exercise bout in the skeletal muscle between lean and overweight/obese (Ov/Ob) individuals. MATERIALS AND METHODS: Participants recruited were men, aged 19-30 years, who were either lean (body mass index [BMI] < 25, 18.5-24.1 kg/m2 ; n = 15) or Ov/Ob (BMI ≥ 25, 25.5-36.9 kg/m2 ; n = 15). Four hours after a high-carbohydrate breakfast (7 kcal/kg; 60% carbohydrate, 25% fat, 15% protein), participants performed a cycling exercise (50% VO2 max, expending ~650 kcal). Muscle biopsies and peripheral blood samples were collected 30 minutes before the meal and immediately after exercise. Blood analysis, and muscle acylcarnitine profiles, transcriptomics, and nucleosome mapping by micrococcal nuclease digestion with deep sequencing were performed. RESULTS: A single exercise bout improved blood metabolite profiles in both lean and Ov/Ob individuals. Muscle long-chain acylcarnitines were increased in Ov/Ob compared with lean participants, but were not altered by exercise. A single exercise bout increased the mRNA abundance of genes related to mitochondria and insulin signalling in both lean and Ov/Ob participants. Nucleosome mapping by micrococcal nuclease digestion with deep sequencing revealed that exercise repositioned the -1 nucleosome away from the transcription start site of the PGC1a promoter and of other mitochondrial genes, but did not affect genes related to insulin signalling, in both lean and Ov/Ob participants. CONCLUSION: These data suggest that a single exercise bout induced epigenetic alterations in skeletal muscle in a BMI-independent manner.


Asunto(s)
Nucleosomas , Sobrepeso , Adulto , Ejercicio Físico/fisiología , Humanos , Masculino , Músculo Esquelético/metabolismo , Nucleosomas/metabolismo , Obesidad , Sobrepeso/metabolismo , Sobrepeso/terapia , Adulto Joven
6.
J Lipid Res ; 62: 100069, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33757734

RESUMEN

Long-chain fatty acid oxidation is frequently impaired in primary and systemic metabolic diseases affecting the heart; thus, therapeutically increasing reliance on normally minor energetic substrates, such as ketones and medium-chain fatty acids, could benefit cardiac health. However, the molecular fundamentals of this therapy are not fully known. Here, we explored the ability of octanoate, an eight-carbon medium-chain fatty acid known as an unregulated mitochondrial energetic substrate, to ameliorate cardiac hypertrophy in long-chain fatty acid oxidation-deficient hearts because of carnitine palmitoyltransferase 2 deletion (Cpt2M-/-). CPT2 converts acylcarnitines to acyl-CoAs in the mitochondrial matrix for oxidative bioenergetic metabolism. In Cpt2M-/- mice, high octanoate-ketogenic diet failed to alleviate myocardial hypertrophy, dysfunction, and acylcarnitine accumulation suggesting that this alternative substrate is not sufficiently compensatory for energy provision. Aligning this outcome, we identified a major metabolic distinction between muscles and liver, wherein heart and skeletal muscle mitochondria were unable to oxidize free octanoate, but liver was able to oxidize free octanoate. Liver mitochondria, but not heart or muscle, highly expressed medium-chain acyl-CoA synthetases, potentially enabling octanoate activation for oxidation and circumventing acylcarnitine shuttling. Conversely, octanoylcarnitine was oxidized by liver, skeletal muscle, and heart, with rates in heart 4-fold greater than liver and, in muscles, was not dependent upon CPT2. Together, these data suggest that dietary octanoate cannot rescue CPT2-deficient cardiac disease. These data also suggest the existence of tissue-specific mechanisms for octanoate oxidative metabolism, with liver being independent of free carnitine availability, whereas cardiac and skeletal muscles depend on carnitine but not on CPT2.


Asunto(s)
Carnitina O-Palmitoiltransferasa/deficiencia , Errores Innatos del Metabolismo
7.
Am J Physiol Heart Circ Physiol ; 321(1): H197-H207, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34085843

RESUMEN

Mouse models of cardiac disease have become essential tools in the study of pathological mechanisms, but the small size of rodents makes it challenging to quantify heart function with noninvasive imaging. Building off recent developments in high-frequency four-dimensional ultrasound (4DUS) imaging, we have applied this technology to study cardiac dysfunction progression in a murine model of metabolic cardiomyopathy. Cardiac knockout of carnitine palmitoyltransferase 2 (Cpt2M-/-) in mice hinders cardiomyocyte bioenergetic metabolism of long-chain fatty acids, and leads to progressive cardiac hypertrophy and heart failure. The proposed analysis provides a standardized approach to measure localized wall kinematics and simultaneously extracts metrics of global cardiac function, LV morphometry, regional circumferential strain, and regional longitudinal strain from an interpolated 4-D mesh of the endo- and epicardial boundaries. Comparison of metric changes due to aging suggests that circumferential strain at the base and longitudinal strain along the posterior wall are most sensitive to disease progression. We further introduce a novel hybrid strain index (HSI) that incorporates information from these two regions and may have greater utility to characterize disease progression relative to other extracted metrics. Potential applications to additional disease models are discussed that could further demonstrate the utility of metrics derived from 4DUS imaging and strain mapping.NEW & NOTEWORTHY High-frequency four-dimensional ultrasound can be used in conjunction with standardized analysis procedures to simultaneously extract left-ventricular global function, morphometry, and regional strain metrics. Furthermore, a novel hybrid strain index (HSI) formula demonstrates greater performance compared with all other metrics in characterizing disease progression in a model of metabolic cardiomyopathy.


Asunto(s)
Cardiomegalia/diagnóstico por imagen , Ecocardiografía Tetradimensional/métodos , Corazón/diagnóstico por imagen , Animales , Cardiomegalia/genética , Carnitina O-Palmitoiltransferasa/genética , Femenino , Ratones , Ratones Noqueados , Función Ventricular Izquierda/fisiología
8.
Proc Natl Acad Sci U S A ; 115(49): 12525-12530, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30401738

RESUMEN

Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is highly abundant in the brain and confers protection against numerous neurological diseases, yet the fundamental mechanisms regulating the enrichment of DHA in the brain remain unknown. Here, we have discovered that a member of the long-chain acyl-CoA synthetase family, Acsl6, is required for the enrichment of DHA in the brain by generating an Acsl6-deficient mouse (Acsl6-/-). Acsl6 is highly enriched in the brain and lipid profiling of Acsl6-/- tissues reveals consistent reductions in DHA-containing lipids in tissues highly abundant with Acsl6. Acsl6-/- mice demonstrate motor impairments, altered glutamate metabolism, and increased astrogliosis and microglia activation. In response to a neuroinflammatory lipopolysaccharide injection, Acsl6-/- brains show similar increases in molecular and pathological indices of astrogliosis compared with controls. These data demonstrate that Acsl6 is a key mediator of neuroprotective DHA enrichment in the brain.


Asunto(s)
Encéfalo/enzimología , Coenzima A Ligasas/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Animales , Encéfalo/metabolismo , Coenzima A Ligasas/genética , Regulación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Microglía , Actividad Motora
9.
J Biol Chem ; 294(39): 14394-14405, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31399511

RESUMEN

Docosahexaenoic acid (DHA) is an ω-3 dietary-derived polyunsaturated fatty acid of marine origin enriched in testes and necessary for normal fertility, yet the mechanisms regulating the enrichment of DHA in the testes remain unclear. Long-chain ACSL6 (acyl-CoA synthetase isoform 6) activates fatty acids for cellular anabolic and catabolic metabolism by ligating a CoA to a fatty acid, is highly expressed in testes, and has high preference for DHA. Here, we investigated the role of ACSL6 for DHA enrichment in the testes and its requirement for male fertility. Acsl6-/- males were severely subfertile with smaller testes, reduced cauda epididymal sperm counts, germ cell loss, and disorganization of the seminiferous epithelium. Total fatty acid profiling of Acsl6-/- testes revealed reduced DHA and increased ω-6 arachidonic acid, a fatty acid profile also reflected in phospholipid composition. Strikingly, lipid imaging demonstrated spatial redistribution of phospholipids in Acsl6-/- testes. Arachidonic acid-containing phospholipids were predominantly interstitial in control testes but diffusely localized across Acsl6-/- testes. In control testes, DHA-containing phospholipids were predominantly within seminiferous tubules, which contain Sertoli cells and spermatogenic cells but relocalized to the interstitium in Acsl6-/- testes. Taken together, these data demonstrate that ACSL6 is an initial driving force for germ cell DHA enrichment and is required for normal spermatogenesis and male fertility.


Asunto(s)
Coenzima A Ligasas/genética , Ácidos Grasos Omega-6/metabolismo , Infertilidad Masculina/genética , Túbulos Seminíferos/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfolípidos/metabolismo , Túbulos Seminíferos/citología , Espermatogénesis
10.
Biochem J ; 476(10): 1521-1537, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31092703

RESUMEN

Alterations to branched-chain keto acid (BCKA) oxidation have been implicated in a wide variety of human diseases, ranging from diabetes to cancer. Although global shifts in BCKA metabolism-evident by gene transcription, metabolite profiling, and in vivo flux analyses have been documented across various pathological conditions, the underlying biochemical mechanism(s) within the mitochondrion remain largely unknown. In vitro experiments using isolated mitochondria represent a powerful biochemical tool for elucidating the role of the mitochondrion in driving disease. Such analyses have routinely been utilized across disciplines to shed valuable insight into mitochondrial-linked pathologies. That said, few studies have attempted to model in vitro BCKA oxidation in isolated organelles. The impetus for the present study stemmed from the knowledge that complete oxidation of each of the three BCKAs involves a reaction dependent upon bicarbonate and ATP, both of which are not typically included in respiration experiments. Based on this, it was hypothesized that the inclusion of exogenous bicarbonate and stimulation of respiration using physiological shifts in ATP-free energy, rather than excess ADP, would allow for maximal BCKA-supported respiratory flux in isolated mitochondria. This hypothesis was confirmed in mitochondria from several mouse tissues, including heart, liver and skeletal muscle. What follows is a thorough characterization and validation of a novel biochemical tool for investigating BCKA metabolism in isolated mitochondria.


Asunto(s)
Adenosina Trifosfato/metabolismo , Bicarbonatos/metabolismo , Cetoácidos/metabolismo , Mitocondrias/metabolismo , Consumo de Oxígeno , Animales , Masculino , Ratones , Especificidad de Órganos , Oxidación-Reducción
11.
Am J Physiol Endocrinol Metab ; 317(5): E941-E951, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31039008

RESUMEN

Neurons uniquely antagonize fatty acid utilization by hydrolyzing the activated form of fatty acids, long chain acyl-CoAs, via the enzyme acyl-CoA thioesterase 7, Acot7. The loss of Acot7 results in increased fatty acid utilization in neurons and exaggerated stimulus-evoked behavior such as an increased startle response. To understand the contribution of Acot7 to seizure susceptibility, we generated Acot7 knockout (KO) mice and assayed their response to kainate-induced seizures. Acot7 KO mice exhibited potentiated behavioral and molecular indices of seizure severity following kainic acid administration, suggesting that fatty acid metabolism in neurons can be a critical regulator of neuronal activity. These data are consistent with the presentation of seizures in a human with genomic deletion of ACOT7 demonstrating the conservation of function across species. To further understand the metabolic complications arising from a deletion in Acot7, we subjected Acot7 KO mice to a high-fat diet. While the loss of Acot7 did not result in metabolic complications following a normal chow diet, a high-fat diet induced greater body weight gain, adiposity, and glucose intolerance in Acot7 KO mice. These data demonstrate that Acot7, a fatty acid metabolic enzyme highly enriched in neurons, regulates both brain-specific metabolic processes related to seizure susceptibility and the whole body response to dietary lipid.


Asunto(s)
Enfermedades Metabólicas/genética , Palmitoil-CoA Hidrolasa/genética , Convulsiones/genética , Adiposidad , Animales , Conducta Animal , Dieta Alta en Grasa , Agonistas de Aminoácidos Excitadores , Femenino , Intolerancia a la Glucosa/genética , Ácido Kaínico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Embarazo , Convulsiones/inducido químicamente , Convulsiones/psicología , Aumento de Peso
12.
J Biol Chem ; 292(45): 18443-18456, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-28916721

RESUMEN

Cardiac hypertrophy is closely linked to impaired fatty acid oxidation, but the molecular basis of this link is unclear. Here, we investigated the loss of an obligate enzyme in mitochondrial long-chain fatty acid oxidation, carnitine palmitoyltransferase 2 (CPT2), on muscle and heart structure, function, and molecular signatures in a muscle- and heart-specific CPT2-deficient mouse (Cpt2M-/-) model. CPT2 loss in heart and muscle reduced complete oxidation of long-chain fatty acids by 87 and 69%, respectively, without altering body weight, energy expenditure, respiratory quotient, or adiposity. Cpt2M-/- mice developed cardiac hypertrophy and systolic dysfunction, evidenced by a 5-fold greater heart mass, 60-90% reduction in blood ejection fraction relative to control mice, and eventual lethality in the absence of cardiac fibrosis. The hypertrophy-inducing mammalian target of rapamycin complex 1 (mTORC1) pathway was activated in Cpt2M-/- hearts; however, daily rapamycin exposure failed to attenuate hypertrophy in Cpt2M-/- mice. Lysine acetylation was reduced by ∼50% in Cpt2M-/- hearts, but trichostatin A, a histone deacetylase inhibitor that improves cardiac remodeling, failed to attenuate Cpt2M-/- hypertrophy. Strikingly, a ketogenic diet increased lysine acetylation in Cpt2M-/- hearts 2.3-fold compared with littermate control mice fed a ketogenic diet, yet it did not improve cardiac hypertrophy. Together, these results suggest that a shift away from mitochondrial fatty acid oxidation initiates deleterious hypertrophic cardiac remodeling independent of fibrosis. The data also indicate that CPT2-deficient hearts are impervious to hypertrophy attenuators, that mitochondrial metabolism regulates cardiac acetylation, and that signals derived from alterations in mitochondrial metabolism are the key mediators of cardiac hypertrophic growth.


Asunto(s)
Cardiomegalia/etiología , Carnitina O-Palmitoiltransferasa/deficiencia , Carnitina O-Palmitoiltransferasa/metabolismo , Corazón/fisiopatología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Errores Innatos del Metabolismo/fisiopatología , Miocardio/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación/efectos de los fármacos , Animales , Remodelación Atrial/efectos de los fármacos , Cardiomegalia/prevención & control , Carnitina O-Palmitoiltransferasa/genética , Cruzamientos Genéticos , Dieta Cetogénica , Resistencia a Medicamentos , Activación Enzimática/efectos de los fármacos , Corazón/efectos de los fármacos , Inhibidores de Histona Desacetilasas/uso terapéutico , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Errores Innatos del Metabolismo/metabolismo , Errores Innatos del Metabolismo/patología , Errores Innatos del Metabolismo/terapia , Ratones Noqueados , Ratones Transgénicos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Miocardio/enzimología , Miocardio/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Sirolimus/uso terapéutico , Organismos Libres de Patógenos Específicos , Análisis de Supervivencia
13.
J Lipid Res ; 58(6): 1174-1185, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28416579

RESUMEN

Acyl-CoA thioesterase 7 (ACOT7) is an intracellular enzyme that converts acyl-CoAs to FFAs. ACOT7 is induced by lipopolysaccharide (LPS); thus, we investigated downstream effects of LPS-induced induction of ACOT7 and its role in inflammatory settings in myeloid cells. Enzymatic thioesterase activity assays in WT and ACOT7-deficient macrophage lysates indicated that endogenous ACOT7 contributes a significant fraction of total acyl-CoA thioesterase activity toward C20:4-, C20:5-, and C22:6-CoA, but contributes little activity toward shorter acyl-CoA species. Lipidomic analyses revealed that LPS causes a dramatic increase, primarily in bis(monoacylglycero)phosphate species containing long (≥C20) polyunsaturated acyl-chains in macrophages, and that the limited effect observed by ACOT7 deficiency is restricted to glycerophospholipids containing 20-carbon unsaturated acyl-chains. Furthermore, ACOT7 deficiency did not detectably alter the ability of LPS to induce cytokines or prostaglandin E2 production in macrophages. Consistently, although ACOT7 was induced in macrophages from diabetic mice, hematopoietic ACOT7 deficiency did not alter the stimulatory effect of diabetes on systemic inflammation or atherosclerosis in LDL receptor-deficient mice. Thus, inflammatory stimuli induce ACOT7 and remodeling of phospholipids containing unsaturated long (≥C20)-acyl chains in macrophages, and, although ACOT7 has preferential thioesterase activity toward these lipid species, loss of ACOT7 has no major detrimental effect on macrophage inflammatory phenotypes.≥.


Asunto(s)
Macrófagos/metabolismo , Palmitoil-CoA Hidrolasa/biosíntesis , Fosfolípidos/metabolismo , Animales , Citocinas/biosíntesis , Dinoprostona/metabolismo , Inducción Enzimática/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Glicerofosfolípidos/metabolismo , Inflamación/enzimología , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Ratones , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Palmitoil-CoA Hidrolasa/deficiencia , Palmitoil-CoA Hidrolasa/genética , Palmitoil-CoA Hidrolasa/metabolismo
14.
FASEB J ; 29(11): 4641-53, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26220174

RESUMEN

Because hearts with a temporally induced knockout of acyl-CoA synthetase 1 (Acsl1(T-/-)) are virtually unable to oxidize fatty acids, glucose use increases 8-fold to compensate. This metabolic switch activates mechanistic target of rapamycin complex 1 (mTORC1), which initiates growth by increasing protein and RNA synthesis and fatty acid metabolism, while decreasing autophagy. Compared with controls, Acsl1(T-/-) hearts contained 3 times more mitochondria with abnormal structure and displayed a 35-43% lower respiratory function. To study the effects of mTORC1 activation on mitochondrial structure and function, mTORC1 was inhibited by treating Acsl1(T-/-) and littermate control mice with rapamycin or vehicle alone for 2 wk. Rapamycin treatment normalized mitochondrial structure, number, and the maximal respiration rate in Acsl1(T-/-) hearts, but did not improve ADP-stimulated oxygen consumption, which was likely caused by the 33-51% lower ATP synthase activity present in both vehicle- and rapamycin-treated Acsl1(T-/-) hearts. The turnover of microtubule associated protein light chain 3b in Acsl1(T-/-) hearts was 88% lower than controls, indicating a diminished rate of autophagy. Rapamycin treatment increased autophagy to a rate that was 3.1-fold higher than in controls, allowing the formation of autophagolysosomes and the clearance of damaged mitochondria. Thus, long-chain acyl-CoA synthetase isoform 1 (ACSL1) deficiency in the heart activated mTORC1, thereby inhibiting autophagy and increasing the number of damaged mitochondria.


Asunto(s)
Autofagia/efectos de los fármacos , Coenzima A Ligasas/deficiencia , Mitocondrias Cardíacas/metabolismo , Complejos Multiproteicos/metabolismo , Miocardio/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Autofagia/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Complejos Multiproteicos/genética , Miocardio/patología , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/genética , ATPasas de Translocación de Protón/metabolismo , Serina-Treonina Quinasas TOR/genética
15.
Biochim Biophys Acta ; 1841(6): 880-7, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24631848

RESUMEN

In mice with temporally-induced cardiac-specific deficiency of acyl-CoA synthetase-1 (Acsl1(H-/-)), the heart is unable to oxidize long-chain fatty acids and relies primarily on glucose for energy. These metabolic changes result in the development of both a spontaneous cardiac hypertrophy and increased phosphorylated S6 kinase (S6K), a substrate of the mechanistic target of rapamycin, mTOR. Doppler echocardiography revealed evidence of significant diastolic dysfunction, indicated by a reduced E/A ratio and increased mean performance index, although the deceleration time and the expression of sarco/endoplasmic reticulum calcium ATPase and phospholamban showed no difference between genotypes. To determine the role of mTOR in the development of cardiac hypertrophy, we treated Acsl1(H-/-) mice with rapamycin. Six to eight week old Acsl1(H-/-) mice and their littermate controls were given i.p. tamoxifen to eliminate cardiac Acsl1, then concomitantly treated for 10weeks with i.p. rapamycin or vehicle alone. Rapamycin completely blocked the enhanced ventricular S6K phosphorylation and cardiac hypertrophy and attenuated the expression of hypertrophy-associated fetal genes, including α-skeletal actin and B-type natriuretic peptide. mTOR activation of the related Acsl3 gene, usually associated with pathologic hypertrophy, was also attenuated in the Acsl1(H-/-) hearts, indicating that alternative pathways of fatty acid activation did not compensate for the loss of Acsl1. Compared to controls, Acsl1(H-/-) hearts exhibited an 8-fold higher uptake of 2-deoxy[1-(14)C]glucose and a 35% lower uptake of the fatty acid analog 2-bromo[1-(14)C]palmitate. These data indicate that Acsl1-deficiency causes diastolic dysfunction and that mTOR activation is linked to the development of cardiac hypertrophy in Acsl1(H-/-) mice.


Asunto(s)
Cardiomegalia/enzimología , Coenzima A Ligasas/genética , Insuficiencia Cardíaca Diastólica/enzimología , Sirolimus/administración & dosificación , Serina-Treonina Quinasas TOR/genética , Animales , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/patología , Coenzima A Ligasas/deficiencia , Coenzima A Ligasas/metabolismo , Retículo Endoplásmico/metabolismo , Insuficiencia Cardíaca Diastólica/genética , Insuficiencia Cardíaca Diastólica/patología , Humanos , Metabolismo de los Lípidos/genética , Ratones , Oxidación-Reducción , Tamoxifeno/farmacología
17.
BMC Biochem ; 15: 20, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25152047

RESUMEN

BACKGROUND: Defects in skeletal muscle fatty acid oxidation have been implicated in the etiology of insulin resistance. Malonyl-CoA decarboxylase (MCD) has been a target of investigation because it reduces the concentration of malonyl-CoA, a metabolite that inhibits fatty acid oxidation. The in vivo role of muscle MCD expression in the development of insulin resistance remains unclear. RESULTS: To determine the role of MCD in skeletal muscle of diet induced obese and insulin resistant mouse models we generated mice expressing a muscle specific transgene for MCD (Tg-fMCD(Skel)) stabilized posttranslationally by the small molecule, Shield-1. Tg-fMCD(Skel) and control mice were placed on either a high fat or low fat diet for 3.5 months. Obese and glucose intolerant as well as lean control Tg-fMCD(Skel) and nontransgenic control mice were treated with Shield-1 and changes in their body weight and insulin sensitivity were determined upon induction of MCD. Inducing MCD activity >5-fold in skeletal muscle over two weeks did not alter body weight or glucose intolerance of obese mice. MCD induction further potentiated the defects in insulin signaling of obese mice. In addition, key enzymes in fatty acid oxidation were suppressed following MCD induction. CONCLUSION: Acute induction of MCD in the skeletal muscle of obese and glucose intolerant mice did not improve body weight and decreased insulin sensitivity compared to obese nontransgenic controls. Induction of MCD in skeletal muscle resulted in a suppression of mitochondrial oxidative genes suggesting a redundant and metabolite driven regulation of gene expression.


Asunto(s)
Carboxiliasas/metabolismo , Músculo Esquelético/enzimología , Animales , Secuencia de Bases , Cartilla de ADN , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Ratones , Ratones Transgénicos , Oxidación-Reducción , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal
18.
J Biol Chem ; 287(20): 16187-98, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22362777

RESUMEN

Betaine-homocysteine S-methyltransferase (BHMT) catalyzes the synthesis of methionine from homocysteine. In our initial report, we observed a reduced body weight in Bhmt(-/-) mice. We initiated this study to investigate the potential role of BHMT in energy metabolism. Compared with the controls (Bhmt(+/+)), Bhmt(-/-) mice had less fat mass, smaller adipocytes, and better glucose and insulin sensitivities. Compared with the controls, Bhmt(-/-) mice had increased energy expenditure, with no changes in food intake, fat uptake or absorption, or in locomotor activity. The reduced adiposity in Bhmt(-/-) mice was not due to hyperthermogenesis. Bhmt(-/-) mice failed to maintain a normal body temperature upon cold exposure because of limited fuel supplies. In vivo and ex vivo tests showed that Bhmt(-/-) mice had normal lipolytic function. The rate of (14)C-labeled fatty acid incorporated into [(14)C]triacylglycerol was the same in Bhmt(+/+) and Bhmt(-/-) gonadal fat depots (GWAT), but it was 62% lower in Bhmt(-/-) inguinal fat depots (IWAT) compared with that of Bhmt(+/+) mice. The rate of (14)C-labeled fatty acid oxidation was the same in both GWAT and IWAT from Bhmt(+/+) and Bhmt(-/-) mice. At basal level, Bhmt(-/-) GWAT had the same [(14)C]glucose oxidation as did the controls. When stimulated with insulin, Bhmt(-/-) GWAT oxidized 2.4-fold more glucose than did the controls. Compared with the controls, the rate of [(14)C]glucose oxidation was 2.4- and 1.8-fold higher, respectively, in Bhmt(-/-) IWAT without or with insulin stimulus. Our results show for the first time a role for BHMT in energy homeostasis.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Betaína-Homocisteína S-Metiltransferasa/metabolismo , Metabolismo Energético/fisiología , Glucosa/metabolismo , Lípidos/biosíntesis , Adipocitos/citología , Animales , Betaína-Homocisteína S-Metiltransferasa/genética , Lipólisis/fisiología , Ratones , Ratones Noqueados , Oxidación-Reducción
19.
Biochim Biophys Acta ; 1822(9): 1411-20, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22366061

RESUMEN

Peroxisomes carry out many essential lipid metabolic functions. Nearly all of these functions require that an acyl group-either a fatty acid or the acyl side chain of a steroid derivative-be thioesterified to coenzyme A (CoA) for subsequent reactions to proceed. This thioesterification, or "activation", reaction, catalyzed by enzymes belonging to the acyl-CoA synthetase family, is thus central to cellular lipid metabolism. However, despite our rather thorough understanding of peroxisomal metabolic pathways, surprisingly little is known about the specific peroxisomal acyl-CoA synthetases that participate in these pathways. Of the 26 acyl-CoA synthetases encoded by the human and mouse genomes, only a few have been reported to be peroxisomal, including ACSL4, SLC27A2, and SLC27A4. In this review, we briefly describe the primary peroxisomal lipid metabolic pathways in which fatty acyl-CoAs participate. Then, we examine the evidence for presence and functions of acyl-CoA synthetases in peroxisomes, much of which was obtained before the existence of multiple acyl-CoA synthetase isoenzymes was known. Finally, we discuss the role(s) of peroxisome-specific acyl-CoA synthetase isoforms in lipid metabolism.


Asunto(s)
Coenzima A Ligasas/metabolismo , Peroxisomas/enzimología , Acilcoenzima A/biosíntesis , Acilcoenzima A/metabolismo , Secuencia de Aminoácidos , Animales , Coenzima A Ligasas/química , Coenzima A Ligasas/fisiología , Secuencia Conservada , Ácidos Grasos/metabolismo , Humanos , Metabolismo de los Lípidos , Datos de Secuencia Molecular , Oxidación-Reducción , Trastorno Peroxisomal/enzimología , Trastorno Peroxisomal/metabolismo , Peroxisomas/metabolismo
20.
Sci Rep ; 13(1): 16742, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798427

RESUMEN

Targeting mitochondrial oxidative phosphorylation (OXPHOS) to treat cancer has been hampered due to serious side-effects potentially arising from the inability to discriminate between non-cancerous and cancerous mitochondria. Herein, comprehensive mitochondrial phenotyping was leveraged to define both the composition and function of OXPHOS across various murine cancers and compared to both matched normal tissues and other organs. When compared to both matched normal tissues, as well as high OXPHOS reliant organs like heart, intrinsic expression of the OXPHOS complexes, as well as OXPHOS flux were discovered to be consistently lower across distinct cancer types. Assuming intrinsic OXPHOS expression/function predicts OXPHOS reliance in vivo, these data suggest that pharmacologic blockade of mitochondrial OXPHOS likely compromises bioenergetic homeostasis in healthy oxidative organs prior to impacting tumor mitochondrial flux in a clinically meaningful way. Although these data caution against the use of indiscriminate mitochondrial inhibitors for cancer treatment, considerable heterogeneity was observed across cancer types with respect to both mitochondrial proteome composition and substrate-specific flux, highlighting the possibility for targeting discrete mitochondrial proteins or pathways unique to a given cancer type.


Asunto(s)
Neoplasias , Fosforilación Oxidativa , Ratones , Humanos , Animales , Mitocondrias/metabolismo , Metabolismo Energético , Neoplasias/genética , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA