Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 15(36): 15193-203, 2013 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23928904

RESUMEN

Five solution processable isoindigo-based donor-acceptor-donor (D-A-D) small molecules with different electron donating strengths have been designed and synthesized. The variation in the electron donating strength of the donor group strongly affected the optical, thermal, electrochemical and photovoltaic device performances of the isoindigo organic materials. The highest power conversion efficiency of ~3.2% was achieved in the bulk heterojunction photovoltaic device consisting of ID3T as the donor and PC70BM as the acceptor. This work demonstrates the potential of isoindigo moieties as electron-deficient units and presents guidelines for the synthesis of D-A-D small molecules for producing highly efficient, solution-processed organic photovoltaic devices.

2.
ACS Macro Lett ; 4(3): 322-326, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35596344

RESUMEN

Nonvolatile resistive memory devices based on a new low bandgap donor-acceptor (D-A) conjugated polymer, poly((E)-6,6'-bis(2,3-dihydrothieno[3,4-b][1,4]dioxine-5-yl)-1,1'-bis(2-octyldodecyl)-[3,3'-biindolinyi-dene]-2,2'-dione) (PIDED), which are fabricated and operated in ambient air, are reported. The D-A conjugated polymer is synthesized from 2,3-dihydrothieno[3,4-b][1,4]dioxine and isoindigo as an electron donor and an electron acceptor, respectively, using CH-arylation polymerization. The devices show nonvolatile, unipolar resistive switching behaviors with a high on/off current ratio (∼104), excellent endurance cycles (>200 cycles), and a long retention time (>104 s) in ambient air. These properties remain stable in ambient air over one year, demonstrating that the device performance is significantly unaffected by exposure to air as the isoindigo has strong electron-withdrawing character and the PIDED exhibits a high degree of crystallinity. This study may pave the way for use of practical nonvolatile organic memory devices operating in ambient air.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA