Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Vet Res ; 16(1): 144, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32434502

RESUMEN

BACKGROUND: This study was performed to investigate the effect of Alpha-galactosidase (AlphaGal) supplementation with two energy levels on the growth performance, amino acid ileal digestibility coefficient "AID%," economic value, intestinal histology, and blood biochemical parameters of broiler chickens. Two-hundred 3-day-old broiler chicks (average body weight 74.34 g ±0.52 Ross 308) were randomly assigned to a 2 × 2 factorial arrangement consisting of two energy diets groups: in the first group, the birds were fed on a recommended energy diet (RED) while the second group was reduced 120 kcal/kg diet as a low energy diet (LED) and two levels of AlphaGal (0 or 50 mg/kg diet) for RED and LED for the 35-day feeding period. RESULTS: The interaction effects between the energy level and the AlphaGal supplementations resulted in significant decrease (P ≤ 0.05) in the body weight, body weight gain, and the relative growth rate. The feed conversion ratio was signficantly increased in LED without supplementation of AlphaGal group during the entire experimental period, this negative effect on the growth performance was corrected by AlphaGal supplementation. The AID% value was increased significantly by AlphaGal supplementation. Blood triglyceride concentrations were significantly decreased (P = 0.02) in the LED group with or without AlphaGal supplementation, while the level of high-density lipoprotein (HDL) was significantly decreased (P = 0.01) in the LED or RED groups supplemented with 50 mg RED AlphaGal. Histologically, the number of intestinal glands and goblet cells increased in both RED and LED groups supplemented with AlphaGal and their secretions were mainly neutral mucopolysaccharides and less acidic mucopolysaccharides. CONCLUSION: AlphaGal supplementation improved the growth performance of broiler chickens fed LED and the growth performance is similar to those fed RED, thereby consequently improving the economic value of these diets. AlphaGal supplementation improves intestinal histology and morphology as well.


Asunto(s)
Pollos/crecimiento & desarrollo , Dieta/veterinaria , Intestinos/efectos de los fármacos , alfa-Galactosidasa/administración & dosificación , Aminoácidos/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Pollos/fisiología , Digestión/efectos de los fármacos , Intestinos/anatomía & histología , Intestinos/fisiología , Lipoproteínas HDL/sangre , Triglicéridos/sangre
2.
Genesis ; 57(11-12): e23339, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31724301

RESUMEN

This study was conducted to check whether the three chick Early B-cell Factor (Ebf) genes, particularly cEbf1, would be targets for Shh and Bmp signals during somites mediolateral (ML) patterning. Tissue manipulations and gain and loss of function experiments for Shh and Bmp4 were performed and the results revealed that cEbf1 expression was initiated in the cranial presomitic mesoderm by low dose of Bmp4 from the lateral mesoderm and maintained in the ventromedial part of the epithelial somite and the medial sclerotome by Shh from the notochord; while cEbf2/3 expression was induced and maintained by Bmp4 and inhibited by high dose of Shh. To determine whether Ebf1 plays a role in somite patterning, transfection of a dominant-negative construct was carried out; this showed suppression of cPax1 expression in the medial sclerotome and upregulation and medial expansion of cEbf3 and cPax3 expression in sclerotome and dermomyotome, respectively, suggesting that Ebf1 is important for ML patterning. Thus, it is possible that low doses of Bmp4 set up Ebf1 expression which, together with Shh from the notochord, leads to establishment of the medial sclerotome and suppression of lateral identities. These data also conclude that Bmp4 is required in both the medial and lateral domain of the somitic mesoderm to keep the ML identity of the sclerotome through maintenance of cEbf gene expression. These striking findings are novel and give a new insight on the role of Bmp4 on mediolateral patterning of somites.


Asunto(s)
Tipificación del Cuerpo/genética , Transactivadores/genética , Animales , Proteína Morfogenética Ósea 4/metabolismo , Embrión de Pollo , Pollos/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Hedgehog/genética , Mesodermo/metabolismo , Notocorda/metabolismo , Somitos/metabolismo , Factores de Transcripción/genética
3.
Complement Ther Med ; 46: 95-102, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31519295

RESUMEN

BACKGROUND AND AIMS: Cyclophosphamide (CPh) is a frequently used drug, in human and animals for its immunosuppressive and anticancer potential. However, it is metabolized by the liver yielding damaging toxicants (to the liver itself and other non-target vital organs) via oxidative stress, apoptosis induction and finally necrosis. Since there is no escaping of using such harmful medications, we focused on alleviating its side-effects. Panax ginseng Meyer is a potent candidate, and we still lack adequate information on its hepatoprotective role against cyclophosphamide-induced liver-damage. METHODS: Here, we used P. ginseng (Korean Red Ginseng) compared to vitamin-E (natural antioxidant) in combating CPh-induced liver damage. Forty-eight albino rats were divided into 6 groups, Control, Ginseng, Vitamin E, Cyclophosphamide (CPh), CPh + Ginseng or CPh + Vitamin-E. Blood samples were taken for biochemical analyses and liver samples were collected for histopathology, oxidative stress evaluation, and gene expression analyses. RESULTS: In CPh group, typical CPh-liver damage was evident (higher levels of AST, ALT, ALP; lower albumin and total proteins levels; lower liver tissue concentrations of SOD, GPX and CAT and higher MDA; injured liver histopathological picture; and finally increased TNF-α, IL-1ß and Caspase3 and decreased BCL-2 genes expression). All these were abolished with either P. ginseng or vitamin-E administration. However, P. ginseng was overall superior to vitamin-E, especially in restoring blood biochemical findings and damaged histopathological picture. CONCLUSIONS: Therefore, P. ginseng is a potent hepatoprotector (vitamin-E to a lesser extent) and should be considered where liver damage is expected secondary to damaging medications; as cyclophosphamide.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Ciclofosfamida/efectos adversos , Hígado/efectos de los fármacos , Panax/química , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Vitamina E/farmacología , Animales , Antioxidantes/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Interleucina-1beta/metabolismo , Hígado/metabolismo , Masculino , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/química , Ratas , Factor de Necrosis Tumoral alfa/metabolismo
4.
Animals (Basel) ; 9(12)2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31756970

RESUMEN

The present study was conducted to assess the effect of replacing fish meal with whey protein concentrate (WPC) on the growth performance, histopathological condition of organs, economic efficiency, disease resistance to intraperitoneal inoculation of Aeromonas hydrophila, and the immune response of Oreochromis niloticus. The toxicity of WPC was tested by measuring the activity of caspase 3 as an indicator of cellular apoptosis. Oreochromis niloticus fingerlings with average initial weight 18.65 ± 0.05 gm/fish (n = 225) for a 10-week feeding trial. The fish were randomly allocated to five experimental groups, having five replacement percentages of fish meal with WPC: 0%, 13.8%, 27.7%, 41.6%, and 55.5% (WPC0, WPC13.8, WPC27.7, WPC41.6, and WPC55.5); zero percentage represented the control group. The results show that the fish fed WPC had the same growth performance as the WPC0. The total weight of bacterially challenged surviving fish increased linearly and quadratically (p ≤ 0.05) by increasing the replacement percentage of fish meal with WPC. The growth hormone, nitric oxide, IgM, complement 3, and lysozyme activity were seen to increase significantly in WPC27.7, especially after a bacterial challenge. The phagocytic percentage and phagocytic index increased significantly in WPC27.7, WPC41.6, and WPC55.5 groups. Histopathological examination of liver sections was badly affected by high replacement in WPC41.6-55.5. The activity of caspase 3 in the immunohistochemical stained sections of the intestine was increased significantly by increasing the inclusion level of WPC. Economically, the total return of the total surviving fish after the bacterial challenge was increased significantly by fish meal replacement with WPC. It could be concluded that WPC could replace the fish meal in Nile tilapia diets up to 27.7%, with improving the gut health, the total weight of survival fish, and immune status of fish challenged with A. hydrophila. High inclusion levels of WPC are not recommended in fish diets, since they negatively affected the intestinal and liver tissues and increased the level of cellular apoptosis, as indicated by the increased caspase 3 activity. Further researches are recommended to evaluate the effect of fish meal replacement with WPC on the histopathological examination of the kidney and to test the capacity of serum IgM to clot the bacteria used for the challenge.

5.
Biomed Pharmacother ; 114: 108732, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30925457

RESUMEN

Pretreatment of mesenchymal stem cells (MSCs) with melatonin (Mel) improves their potential therapeutic effect on chronic diseases and cancers. However, this preconditioning strategy may direct the effect of Mel toward MSCs alone and deprive cancer cells of the oncostatic effect of Mel. Herein, we hypothesized that Mel given before transplantation of non-preconditioned MSCs may maximize the therapeutic outcome via the oncostatic effect of Mel by preparing a suitable tumor microenvironment for MSCs. Female rats (n = 60) were equally divided into 6 groups; normal control, diethylnitrosamine (DEN), DEN + Mel, DEN + MSCs, DEN + MSCs preconditioned with Mel, and DEN + MSCs + Mel. The obtained data revealed that administration of Mel before MSCs treatment without preconditioning yielded a better ameliorative effect against DEN-induced hepatocellular carcinoma (HCC) as evidenced by: 1) reduced serum levels of alpha fetoprotein and gamma-glutamyl transferase; 2) decreased number and area of glutathione S-transferase placental positive foci; 3) induced apoptosis (as indicated by increased cleaved caspase-3 activity, upregulated expression of proapoptotic genes Bax and caspase 3 and downregulated expression of anti-apoptotic genes Bcl2, survivin); 4) decreased malondialdehyde level and increased activities of superoxide dismutase, catalase, and glutathione peroxidase enzymes; and 5) reduced inflammation, angiogenesis and metastasis as indicated by downregulated expression of interleukin 1 beta, nuclear factor kappa B, vascular endothelial growth factor, and matrix metallopeptidase 9 genes and upregulated expression of metalloproteinase inhibitor 1 gene. Thus, administration of Mel before MSCs (without preconditioning) fostered the survival and therapeutic potential of MSCs in HCC, possibly through induction of apoptosis and inhibition of inflammation and oxidative stress. This new strategy showed better therapeutic outcomes and may improve MSC-based therapies for HCC.


Asunto(s)
Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/tratamiento farmacológico , Dietilnitrosamina/farmacología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/tratamiento farmacológico , Melatonina/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Femenino , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Regulación hacia Arriba/efectos de los fármacos , alfa-Fetoproteínas/metabolismo , gamma-Glutamiltransferasa/metabolismo
6.
AMB Express ; 8(1): 86, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29796879

RESUMEN

The present study evaluated the impact of supplementing the rabbit diet with graded levels of whey powder and citric acid. The dietary treatments were as follows: T1, control diet (basal diet); T2, basal diet + 10 g/kg citric acid; T3, T2 + whey powder (7.5 g/kg); T4, T2 + whey powder (15 g/kg); and T5, T2 + whey powder (22.5 g/kg). Results, the T5 diet resulted in the best (P < 0.05) final body weight, body weight gain, feed conversion ratio, protein efficiency, relative growth rate, and dressed weight. The best (P < 0.05) digestion coefficients were associated with the T4 and T5 diets. Rabbits fed diets supplemented with citric acid alone or with addition of graded levels of whey powder showed significantly lower (P < 0.05) intestinal pH than those fed the T1 diet. The T4 and T5 diets resulted in greater CP and ash in the thigh muscle compared with the T1 and T2 diets. Calcium content in the femur bone was higher (P < 0.05) in the T5 group followed by T4 and T3. The wall of different parts of the small intestine improved in the T4 and T5 groups, showing the greatest increase in the small intestinal villi, intestinal glands, and amount of goblet cells. In conclusion, addition of whey powder (1.5, and 2.25%) increased the growth performance, nutrient digestibility and crude protein content of the thigh muscle, and improved the gut health of growing rabbits and the best level was 2.25% whey powder. Citric acid addition had no positive effect on growth performance, nutrient digestibility, crude protein content of the thigh muscle, and the gut health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA