Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mol Pharm ; 21(2): 622-632, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38273445

RESUMEN

Poly(ethylene glycol) (PEG) is used in many common products, such as cosmetics. PEG, however, is also used to covalently conjugate drug molecules, proteins, or nanocarriers, which is termed PEGylation, to serve as a shield against the natural immune system of the human body. Repeated administration of some PEGylated products, however, is known to induce anti-PEG antibodies. In addition, preexisting anti-PEG antibodies are now being detected in healthy individuals who have never received PEGylated therapeutics. Both treatment-induced and preexisting anti-PEG antibodies alter the pharmacokinetic properties, which can result in a subsequent reduction in the therapeutic efficacy of administered PEGylated therapeutics through the so-called accelerated blood clearance (ABC) phenomenon. Moreover, these anti-PEG antibodies are widely reported to be related to severe hypersensitivity reactions following the administration of PEGylated therapeutics, including COVID-19 vaccines. We recently reported that the topical application of a cosmetic product containing PEG derivatives induced anti-PEG immunoglobulin M (IgM) in a mouse model. Our finding indicates that the PEG derivatives in cosmetic products could be a major cause of the preexistence of anti-PEG antibodies in healthy individuals. In this study, therefore, the pharmacokinetics and therapeutic effects of Doxil (doxorubicin hydrochloride-loaded PEGylated liposomes) and oxaliplatin-loaded PEGylated liposomes (Liposomal l-OHP) were studied in mice. The anti-PEG IgM antibodies induced by the topical application of cosmetic products obviously accelerated the blood clearance of both PEGylated liposomal formulations. Moreover, in C26 tumor-bearing mice, the tumor growth suppressive effects of both Doxil and Liposomal l-OHP were significantly attenuated in the presence of anti-PEG IgM antibodies induced by the topical application of cosmetic products. These results confirm that the topical application of a cosmetic product containing PEG derivatives could produce preexisting anti-PEG antibodies that then affect the therapeutic efficacy of subsequent doses of PEGylated therapeutics.


Asunto(s)
Doxorrubicina/análogos & derivados , Liposomas , Neoplasias , Ratones , Humanos , Animales , Composición de Medicamentos , Vacunas contra la COVID-19 , Inmunoglobulina M , Polietilenglicoles
2.
Biol Pharm Bull ; 45(1): 129-135, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34980774

RESUMEN

The purpose of this study was to develop a Bio-layer interferometry (BLI) system that could be an alternative approach for the direct evaluation of anti-polyethylene glycol (PEG) immunoglobulin M (IgM)-mediated complement activation of the accelerated blood clearance (ABC) phenomenon. Complement activation is well known to play an important role in the clearance of PEGylated and non-PEGylated nanomedicines following intravenous injection. This complement system is also thought to be responsible for the ABC phenomenon wherein repeated injections of PEGylated products are bound by anti-PEG antibodies. This study used three different sources of anti-PEG antibodies: HIK-M09 monoclonal antibodies (mAbs); HIK-M11 mAbs; and antiserum containing polyclonal anti-PEG IgMs. 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-n-[methoxy (polyethylene glycol)-2000] (mPEG2000-DSPE) was immobilized as an antigen on aminopropyl silane biosensor chips of BLI. All anti-PEG IgMs in the sources increased the signals (thickness of the layer around the sensor tip) regarding binding of anti-PEG antibodies to PEG on the chips. In all anti-PEG IgM sources, further increases in the signals were observed when incubated in naïve mouse serum, which is a complement source, but not in heat inactivated (56 °C, 30 min) mouse serum, which abolishes complement activity. These findings show that the complement activation mediated via anti-PEG IgMs, which occurred on the sensor chips, was detected via BLI analysis. The complement activation induced by all anti-PEG IgM sources was confirmed via conventional enzyme-linked immunosorbent assay (ELISA), which is the conventional mode for detection of complement activation. Our study results show that BLI is a simple alternative method for the detection of complement activation.


Asunto(s)
Liposomas , Polietilenglicoles , Animales , Activación de Complemento , Inmunoglobulina M , Interferometría , Liposomas/farmacología , Ratones , Polietilenglicoles/farmacología
3.
Mol Pharm ; 18(6): 2406-2415, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33896187

RESUMEN

Gangliosides (glycosphingolipids) reduce antibody production by inhibiting B-cell receptor (BCR) signaling. We have shown that a copresentation of gangliosides and polyethylene glycol (PEG) on the same liposomes suppresses anti-PEG IgM production in mice. In addition, we recently observed that pDNA incorporated in PEGylated cationic liposomes (PCLs) induces anti-DNA IgM, which could be a hurdle to the development of efficient gene delivery systems. Therefore, the focus of this study was to determine if the copresentation of gangliosides and DNA on the same PCL would suppress antibody production against DNA. PCLs including DNA induced both anti-PEG IgM production and anti-DNA IgM production. The extent of anti-PEG and anti-DNA IgM production was likely dependent on the immunogenicity of the complexed DNA. Treatment of clodronate-containing liposomes, which causes a depletion of phagocytic cells, suppressed anti-PEG IgM production from PCLs that did not include DNA but failed to suppress anti-PEG IgM production from PCLs that complexed DNA (PCLD). Both anti-PEG IgM and anti-DNA IgM was induced in T-cell-deficient nude mice as well as in normal mice following treatment with PCLs and PCLD, respectively. These results indicate that phagocytic cells contribute to anti-PEG IgM production but not to anti-DNA IgM production, while T-cells do not contribute to any form of antibody production. The copresentation of gangliosides and DNA significantly reduced anti-PEG IgM production but unfortunately did not reduce anti-DNA IgM production. It appears that the immunosuppressive effect of gangliosides, presumably via the CD22 signaling pathway, is limited only to anti-PEG immunity.


Asunto(s)
Ácido Clodrónico/administración & dosificación , ADN/inmunología , Gangliósidos/inmunología , Técnicas de Transferencia de Gen/efectos adversos , Inmunoglobulina M/metabolismo , Animales , Formación de Anticuerpos , Cationes , Gangliósidos/química , Terapia Genética/métodos , Liposomas , Masculino , Ratones , Fagocitos/efectos de los fármacos , Fagocitos/inmunología , Fagocitos/metabolismo , Plásmidos/administración & dosificación , Plásmidos/genética , Polietilenglicoles/química
4.
Biol Pharm Bull ; 44(6): 844-852, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34078817

RESUMEN

Acidic extracellular pH (pHe) is characteristic of the tumor microenvironment. Several reports suggest that increasing pHe improves the response of immune checkpoint inhibitors in murine models. To increase pHe, either sodium bicarbonate (NaHCO3) or citric acid/potassium-sodium citrate (KNa-cit) was chronically administered to mice. It is hypothesized that bicarbonate ions (HCO3-), produced from these alkalinizing agents in vivo, increased pHe in the tumor, and excess HCO3- eliminated into urine increased urinary pH values. However, there is little published information on the effect of changing serum HCO3- concentrations, urinary HCO3- concentrations and urinary pH values on the therapeutic outcomes of immunotherapy. In this study, we report that oral administration of either NaHCO3 or KNa-cit increased responses to anti-programmed cell death-1 (PD-1) antibody, an immune checkpoint inhibitor, in a murine B16 melanoma model. In addition, we report that daily oral administration of an alkalinizing agent increased blood HCO3- concentrations, corresponding to increasing the tumor pHe. Serum HCO3- concentrations also correlated with urinary HCO3- concentrations and urinary pH values. There was a clear relationship between urinary pH values and the antitumor effects of immunotherapy with anti-PD-1 antibody. Our results imply that blood HCO3- concentrations, corresponding to tumor pHe and urinary pH values, may be important factors that predict the clinical outcomes of an immunotherapeutic agent, when combined with alkalinizing agents such as NaHCO3 and KNa-cit.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Bicarbonatos/uso terapéutico , Citratos/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Administración Oral , Animales , Anticuerpos Monoclonales/farmacología , Antineoplásicos Inmunológicos/farmacología , Bicarbonatos/sangre , Bicarbonatos/farmacología , Línea Celular Tumoral , Citratos/farmacología , Femenino , Concentración de Iones de Hidrógeno , Inhibidores de Puntos de Control Inmunológico/farmacología , Linfocitos/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias/química , Neoplasias/inmunología , Neoplasias/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Macrófagos Asociados a Tumores/inmunología , Orina/química
5.
Drug Dev Ind Pharm ; 47(7): 1029-1037, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34590548

RESUMEN

The nanotechnology approach has been recently adopted to provide more reliable, effective, controlled, and safe drug delivery systems. Nanostructured materials have gained great interest, including siliceous and carbonaceous nanoparticles. The effectiveness of mesoporous carbon nanoparticles (MCNs) in tumor imaging, targeting, and treatment is urging for more future studies. MCNs possess superior properties such as their biocompatibility, large surface area, large pore volume, tunability, and more responsive behavior to internal and external release triggers. These outstanding features make MCNs more applicable for stimuli-responsive drug delivery than the conventional forms of mesoporous silica nanoparticles (MSNs) and other carbon nanoparticles. In this review, we outlined the latest updates regarding the safety, benefits, and potential applications of MCNs.


Asunto(s)
Carbono , Nanopartículas , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Porosidad , Dióxido de Silicio
6.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34639135

RESUMEN

Exosomes (EXOs) were given attention as an extracellular vesicle (EV) with a pivotal pathophysiological role in the development of certain neurodegenerative disorders (NDD), such as Parkinson's and Alzheimer's disease (AD). EXOs have shown the potential to carry pathological and therapeutic cargo; thus, researchers have harnessed EXOs in drug delivery applications. EXOs have shown low immunogenicity as natural drug delivery vehicles, thus ensuring efficient drug delivery without causing significant adverse reactions. Recently, EXOs provided potential drug delivery opportunities in AD and promising future clinical applications with the diagnosis of NDD and were studied for their usefulness in disease detection and prediction prior to the emergence of symptoms. In the future, the microfluidics technique will play an essential role in isolating and detecting EXOs to diagnose AD before the development of advanced symptoms. This review is not reiterative literature but will discuss why EXOs have strong potential in treating AD and how they can be used as a tool to predict and diagnose this disorder.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/terapia , Exosomas/química , Exosomas/patología , Animales , Humanos
7.
Mol Pharm ; 17(8): 2964-2970, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32519877

RESUMEN

PEGylation had been used successfully to improve the circulation half-lives and some physicochemical properties of protein therapeutics. However, anti-polyethylene glycol (anti-PEG) antibodies, either pre-existing or treatment-induced, can negatively affect the pharmacokinetics and pharmacological efficacy of PEGylated proteins. We have examined anti-PEG immune responses in mice for peginterferon alfa-2a (Pegasys), a clinically approved PEGylated protein therapeutic, at both the recommended dose (equivalent to 3 µg/kg in mice) and at higher doses (150 µg/kg) for single or repeated subcutaneous (s.c.) administrations. The effect of treatment-induced anti-PEG IgM on serum concentrations of Pegasys, following repeated administrations, was evaluated. In addition, the effect of pre-existing anti-PEG IgM elicited by a different PEGylated protein, PEG-OVA, on the systemic clearance of Pegasys, was investigated. At a s.c. dose of 3 µg/kg, single injections of Pegasys barely elicited anti-PEG immune responses. Four repeated doses of 150 µg/kg Pegasys elicited anti-PEG IgM production, depending on dose frequency, and triggered the rapid clearance of subsequent doses. In addition, anti-PEG-IgM produced in response to prior administration of PEG-OVA caused a rapid blood clearance of Pegasys. Our results, therefore, underscore the importance of screening for both pre-existing and treatment-induced anti-PEG antibodies in patients prior to and during treatment with PEGylated protein drugs.


Asunto(s)
Anticuerpos Antiidiotipos/inmunología , Inmunoglobulina M/inmunología , Interferón-alfa/farmacocinética , Polietilenglicoles/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos BALB C , Polietilenglicoles/farmacocinética , Proteínas Recombinantes/farmacocinética
8.
Biol Pharm Bull ; 43(9): 1393-1397, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32879214

RESUMEN

Protein-based therapeutics are beginning to be widely used in various clinical settings. Conjugation of polyethylene glycol (PEGylation) to protein therapeutics improves their circulation half-lives in the body. However, we and other groups observed that the initial dose of some PEGylated protein-based therapeutics may induce anti-PEG antibodies (primarily immunoglobulin M (IgM)), resulting in the accelerated clearance of a second dose. The mechanism behind the induction of anti-PEG IgM by PEGylated protein-based therapeutics is still unclear. In this study, we found that Pegfilgrastim (PEG-G-CSF, the PEGylated form of the recombinant human granulocyte colony-stimulating factor) induced anti-PEG IgM in mice when administered via either intravenous or subcutaneous administration. However, the anti-PEG IgM induction is diminished both in athymic nude mice lacking T cells and in splenectomized mice. In addition, anti-PEG IgM production was significantly diminished in the cyclophosphamide-treated mice depleted of B-cells. These results indicate that anti-PEG IgM production by Pegfilgrastim occurs in spleen in a T cell-dependent manner, which differs from anti-PEG IgM induced by PEGylated liposomes. However, B cells, both marginal zone and follicular, are essential for anti-PEG IgM production in both PEGylated preparations.


Asunto(s)
Filgrastim/inmunología , Inmunoglobulina M/metabolismo , Bazo/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/metabolismo , Ciclofosfamida/administración & dosificación , Filgrastim/administración & dosificación , Filgrastim/química , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Inyecciones Intravenosas , Inyecciones Subcutáneas , Liposomas , Depleción Linfocítica/métodos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Animales , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química , Bazo/inmunología , Bazo/metabolismo , Bazo/cirugía , Esplenectomía , Linfocitos T/inmunología , Timo/efectos de los fármacos , Timo/inmunología , Timo/metabolismo
9.
Biol Pharm Bull ; 41(7): 1078-1083, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29962402

RESUMEN

Modulation of tumor immunity is a known factor in the antitumor activity of many chemotherapeutic agents. Exosomes are extracellular nanometric vesicles that are released by almost all types of cells, which includes cancer cells. These vesicles play a crucial role in tumor immunity. Many in vitro studies have reproduced the aggressive secretion of exosomes following treatment with conventional anticancer drugs. Nevertheless, how chemotherapeutic agents including nanomedicines such as Doxil® affect the in vivo secretion of exosomes is yet to be elucidated. In this study, the effect of intravenous injection of either free doxorubicin (DXR) or liposomal DXR formulation (Doxil®) on exosome secretion was evaluated in BALB/c mice. Exosomes were isolated from serum by using an ExoQuick™ kit. Free DXR treatment markedly increased serum exosome levels in a post-injection time-dependent manner, while Doxil® treatment did not. Exosomal size distribution and marker protein expressions (CD9, CD63, and TSG101) were studied. The physical/biological characteristics of treatment-induced exosomes were comparable to those of control mice. Interestingly, splenectomy significantly suppressed the copious exosomal secretions induced by free DXR. Collectively, our results indicate that conventional anticancer agents induce the secretion of circulating exosomes, presumably via stimulating immune cells of the spleen. As far as we know, this study represents the first report indicating that conventional chemotherapeutics may induce exosome secretion which might, in turn, contribute partly to the antitumor effect of chemotherapeutic agents.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/análogos & derivados , Exocitosis/efectos de los fármacos , Exosomas/metabolismo , Animales , Doxorrubicina/farmacología , Exosomas/efectos de los fármacos , Inyecciones Intravenosas , Masculino , Ratones , Ratones Endogámicos BALB C , Modelos Animales , Polietilenglicoles/farmacología , Bazo/citología , Bazo/efectos de los fármacos , Bazo/metabolismo
10.
Biol Pharm Bull ; 41(5): 733-742, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29709910

RESUMEN

Exosomes are tiny extracellular vesicles that are usually harvested in small quantities. Such small yield has been an obstacle for the expansion of the basic research regarding exosome analysis and applications in drug delivery. To increase exosome yield, we attempted to stimulate tumor cells via the addition of liposomes in vitro. Neutral, cationic-bare or PEGylated liposomes were incubated with four different tumor cell lines. The stimulatory effect of liposomal formulations on exosome secretion and cellular uptake propensity of the collected exosome by mother cells or different cells was evaluated. Both neutral and cationic-bare liposomes enhanced exosome secretion in a dose-dependent manner. Fluid cationic liposomes provided the strongest stimulation. Surprisingly, the PEGylation of bare liposomes diminished exosome secretion. Exosomes harvested in the presence of fluid cationic liposomes showed increased cellular uptake, but solid cationic liposomes did not. Our findings indicate that the physicochemical properties of liposomes determine whether they will act as a stimulant or as a depressant on exosome secretion from tumor cells. Liposomal stimulation may be a useful strategy to increase exosome yield, although further preparation to increase the purity of exosomes may be needed. In addition, fine-tuning of the biological properties of induced exosomes could be achieved via controlling the physicochemical properties of the stimulant liposomes.


Asunto(s)
Exosomas/efectos de los fármacos , Liposomas/farmacología , Animales , Línea Celular Tumoral , Humanos , Ratones
11.
AAPS PharmSciTech ; 16(3): 645-55, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25501871

RESUMEN

Pharmaceutical development was adopted in the current study to propose a pediatric rectal formulation of sulpiride as a substitute to the available oral or parenteral formulations in the management of Tourette syndrome (TS). The goal was to formulate a product that is easy to use, stable, and highly bioavailable and to achieve a rapid clinical efficacy. Towards this aim, sulpiride solid dispersion (SD) with tartaric acid at a weight ratio of 1:0.25 was incorporated into different suppository bases, namely witepsol W25, witepsol H15, witepsol E75, suppocire NA, suppocire A, glycerogelatin, and polyethylene glycols. The formulae were evaluated in vitro using different pharmacotechnical methods such as visual, melting, weight and content uniformities, drug release, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), and X-ray diffraction (XRD) analyses. In vivo bioavailability was also assessed in rabbits to compare the bioavailability of either raw sulpiride-incorporated or its SD-incorporated witepsol H15-based suppositories to its oral suspension (reference). Sulpiride SD-incorporated witepsol H15 formulation showed acceptable in vitro characteristics with a bioavailability of 117% relative to oral dosing, which excel that in humans (27% after dosing of oral product). In addition, the proposed formula not only passed the 6-month stability study but also proposed a promising scale-up approach. Hence, it showed a great potential for pediatric product development to manage TS in rural areas.


Asunto(s)
Sulpirida/química , Sulpirida/farmacología , Supositorios/química , Supositorios/farmacología , Síndrome de Tourette/tratamiento farmacológico , Animales , Disponibilidad Biológica , Rastreo Diferencial de Calorimetría/métodos , Química Farmacéutica/métodos , Masculino , Polietilenglicoles/química , Conejos , Triglicéridos/química , Difracción de Rayos X/métodos
12.
J Pharm Sci ; 113(3): 555-578, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37931786

RESUMEN

Polyethylene glycol (PEG) is a versatile polymer that is used in numerous pharmaceutical applications like the food industry, a wide range of disinfectants, cosmetics, and many commonly used household products. PEGylation is the term used to describe the covalent attachment of PEG molecules to nanocarriers, proteins and peptides, and it is used to prolong the circulation half-life of the PEGylated products. Consequently, PEGylation improves the efficacy of PEGylated therapeutics. However, after four decades of research and more than two decades of clinical applications, an unappealing side of PEGylation has emerged. PEG immunogenicity and antigenicity are remarkable challenges that confound the widespread clinical application of PEGylated therapeutics - even those under clinical trials - as anti-PEG antibodies (Abs) are commonly reported following the systemic administration of PEGylated therapeutics. Furthermore, pre-existing anti-PEG Abs have also been reported in healthy individuals who have never been treated with PEGylated therapeutics. The circulating anti-PEG Abs, both treatment-induced and pre-existing, selectively bind to PEG molecules of the administered PEGylated therapeutics inducing activation of the complement system, which results in remarkable clinical implications with varying severity. These include increased blood clearance of the administered PEGylated therapeutics through what is known as the accelerated blood clearance (ABC) phenomenon and initiation of serious adverse effects through complement activation-related pseudoallergic reactions (CARPA). Therefore, the US FDA industry guidelines have recommended the screening of anti-PEG Abs, in addition to Abs against PEGylated proteins, in the clinical trials of PEGylated protein therapeutics. In addition, strategies revoking the immunogenic response against PEGylated therapeutics without compromising their therapeutic efficacy are important for the further development of advanced PEGylated therapeutics and drug-delivery systems.


Asunto(s)
Anticuerpos , Proteínas , Humanos , Prevalencia , Proteínas/química , Polietilenglicoles/química , Polímeros , Liposomas/química , Inmunoglobulina M
13.
Methods Mol Biol ; 2622: 159-172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36781759

RESUMEN

PEGylation is a crucial process for decorating the surface of liposomes with polyethylene glycol (PEG) for clinical use. This process endows the liposomes extended circulation time and improved stability in vivo. The post-insertion method is one of the well-established techniques for PEGylation. This method requires only one-step incubation to accomplish the transfer of PEGylated lipids from PEGylated lipid-based micelles into the membranes of preformed liposomes.


Asunto(s)
Liposomas , Polietilenglicoles , Micelas
14.
J Control Release ; 360: 285-292, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37355210

RESUMEN

Modifying the surface of nanoparticles with polyethylene glycol (PEG) is a commonly used approach for improving the in vitro stability of nanoparticles such as liposomes and increasing their circulation half-lives. We have demonstrated that, in certain conditions, an intravenous (i.v.) injection of PEGylated liposomes (PEG-Lip) induced anti-PEG IgM antibodies, which led to rapid clearance of second doses in mice. SARS-CoV-2 vaccines, composed of mRNA-containing PEGylated lipid nanoparticles, have been widely administered as intramuscular (i.m.) injections, so it is important to determine if PEGylated formulations can induce anti-PEG antibodies. If the favorable properties that PEGylation imparts to therapeutic nanoparticles are to be widely applicable this should apply to various routes of administration. However, there are few reports on the effect of different administration routes on the in vivo production of anti-PEG IgM. In this study, we investigated anti-PEG IgM production in mice following i.m., intraperitoneal (i.p.) and subcutaneous (s.c.) administration of PEG-Lip. PEG-Lip appeared to induce anti-PEG IgM by all the tested routes of administration, although the lipid dose causing maximum responses varied. Splenectomy attenuated the anti-PEG IgM production for all routes of administration, suggesting that splenic immune cells may have contributed to anti-PEG IgM production. Interestingly, in vitro experiments indicated that not only splenic cells but also cells in the peritoneal cavity induced anti-PEG IgM following incubation with PEG-Lip. These observations confirm previous experiments that have shown that measurable amounts of PEG-Lip administered i.p., i.m. or s.c. are absorbed to some extent into the blood circulation, where they can be distributed to the spleen and/or peritoneal cavity, and are recognized by B cells, triggering anti-PEG IgM production. The results obtained in this study have important implications for developing efficient PEGylated nanoparticular delivery system.


Asunto(s)
COVID-19 , Polietilenglicoles , Ratones , Animales , Humanos , Liposomas , Vacunas contra la COVID-19 , Inmunoglobulina M , SARS-CoV-2
15.
Materials (Basel) ; 15(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35269165

RESUMEN

Electrospinning (ES) has become a straightforward and customizable drug delivery technique for fabricating drug-loaded nanofibers (NFs) using various biodegradable and non-biodegradable polymers. One of NF's pros is to provide a controlled drug release through managing the NF structure by changing the spinneret type and nature of the used polymer. Electrospun NFs are employed as implants in several applications including, cancer therapy, microbial infections, and regenerative medicine. These implants facilitate a unique local delivery of chemotherapy because of their high loading capability, wide surface area, and cost-effectiveness. Multi-drug combination, magnetic, thermal, and gene therapies are promising strategies for improving chemotherapeutic efficiency. In addition, implants are recognized as an effective antimicrobial drug delivery system overriding drawbacks of traditional antibiotic administration routes such as their bioavailability and dosage levels. Recently, a sophisticated strategy has emerged for wound healing by producing biomimetic nanofibrous materials with clinically relevant properties and desirable loading capability with regenerative agents. Electrospun NFs have proposed unique solutions, including pelvic organ prolapse treatment, viable alternatives to surgical operations, and dental tissue regeneration. Conventional ES setups include difficult-assembled mega-sized equipment producing bulky matrices with inadequate stability and storage. Lately, there has become an increasing need for portable ES devices using completely available off-shelf materials to yield highly-efficient NFs for dressing wounds and rapid hemostasis. This review covers recent updates on electrospun NFs in nanomedicine applications. ES of biopolymers and drugs is discussed regarding their current scope and future outlook.

16.
Int J Pharm ; 615: 121539, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35124114

RESUMEN

The presence of anti-polyethylene glycol (PEG) antibodies in the systemic circulation might have potential implications for the therapeutic activity of PEGylated products in vivo in the clinic. In order to study the effect of pre-existing anti-PEG antibodies on the in vivo fate and the therapeutic efficiency of PEGylated therapeutics, we developed a BALB/c mouse model by virtue of the intraperitoneal (i.p.) inoculation of hybridoma cells (HIK-M09 and HIK-M11), secreting monoclonal anti-PEG IgM, mimicking the presence of pre-existing anti-PEG antibodies in the blood. In the model, the titers of anti-PEG IgM in the blood increased as a function of hybridoma cells numbers and time after i.p. inoculation. The in vivo levels of anti-PEG IgM decreased in a dose-dependent manner, following i.v. administration of empty PEGylated liposomes. C26 tumor-bearing mice with measurable levels of anti-PEG IgM, receiving i.v. injection of DiR-labeled empty PEGylated liposomes, showed lower levels of liposomal tumor accumulation and higher levels of liver and spleen accumulation, compared to C26 tumor-bearing mice without measurable anti-PEG IgM. This specifies that the presence of anti-PEG IgM in the murine circulation induced accelerated blood clearance of PEGylated liposomes and reduced their tumor accumulation. The biodistribution and antitumor efficacy of commercially available doxorubicin (DXR)-containing PEGylated liposomes, Doxil®, were scrutinized in the anti-PEG IgM mouse model. In C26 tumor-bearing mice having circulating anti-PEG IgM, at 24 h after injection almost no DXR was observed in blood and tumor, and increased DXR accumulation was observed in spleen and liver, compared to tumor-bearing mice with no circulating anti-PEG IgM. The antitumor efficacy of Doxil® was significantly compromised in the C26 tumor-bearing mice in the presence of anti-PEG IgM. These results demonstrate that the anti-PEG IgM mouse model could be a useful prognostic indicator for the therapeutic effectiveness of different formulations of PEGylated therapeutics in pre-clinical studies.


Asunto(s)
Liposomas , Polietilenglicoles , Animales , Inmunoglobulina M , Ratones , Ratones Endogámicos BALB C , Distribución Tisular
17.
Phytochemistry ; 198: 113154, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35245525

RESUMEN

Three undescribed diterpenes including two ent-abietanes, euphomauritanol A, and euphomauritanol B, and one jatrophane, euphomauritanophane A, in addition to eight previously described metabolites were isolated from the MeOH-CH2Cl2 (1:1) extract of the Euphorbia mauritanica. The chemical structures of isolates were established based on the spectroscopic means including FT-IR, HRMS, 1D and 2D NMR. The absolute stereochemistry of the undescribed diterpenes was deduced by experimental and calculated TDDFT-electronic circular dichroism (ECD). The anti-proliferative effects of the isolated diterpenes were evaluated against B16-BL6, Hep G2, and Caco-2. The euphomauritanol A, euphomauritanol B, and euphomauritanophane A significantly inhibited the growth of murine melanoma B16-BL6 cell lines with IC50 10.28, 20.22, and 38.81 µM, respectively with no responses against the other cells. These activities were rationalized by molecular docking of the active compounds in BRAFV600E and MEK1 active sites. Moreover, the in-silico pharmacokinetics predictions by Swiss ADME revealed that the active compounds possessed favorable oral bioavailability and drug-likeness properties.


Asunto(s)
Diterpenos , Euphorbia , MAP Quinasa Quinasa 1 , Melanoma , Proteínas Proto-Oncogénicas B-raf , Animales , Células CACO-2 , Diterpenos/química , Diterpenos/farmacología , Egipto , Euphorbia/química , Células Hep G2 , Humanos , MAP Quinasa Quinasa 1/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/enzimología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/enzimología , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Proteínas Proto-Oncogénicas B-raf/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
18.
J Control Release ; 351: 215-230, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36165835

RESUMEN

Polyethylene glycol (PEG) is a versatile polymer that is widely used as an additive in foods and cosmetics, and as a carrier in PEGylated therapeutics. Even though PEG is thought to be less immunogenic, or perhaps even non-immunogenic, with a variety of physicochemical properties, there is mounting evidence that PEG causes immunogenic responses when conjugated with other materials such as proteins and nanocarriers. Under these conditions, PEG with other materials can result in the production of anti-PEG antibodies after administration. The antibodies that are induced seem to have a deleterious impact on the therapeutic efficacy of subsequently administered PEGylated formulations. In addition, hypersensitivity to PEGylated formulations could be a significant barrier to the utility of PEGylated products. Several reports have linked the presence of anti-PEG antibodies to incidences of complement activation-related pseudoallergy (CARPA) following the administration of PEGylated formulations. The use of COVID-19 mRNA vaccines, which are composed mainly of PEGylated lipid nanoparticles (LNPs), has recently gained wide acceptance, although many cases of post-vaccination hypersensitivity have been documented. Therefore, our review focuses not only on the importance of PEGs and its great role in improving the therapeutic efficacy of various medications, but also on the hypersensitivity reactions attributed to the use of PEGylated products that include PEG-based mRNA COVID-19 vaccines.


Asunto(s)
COVID-19 , Hipersensibilidad , Humanos , Polietilenglicoles/química , Vacunas contra la COVID-19 , Liposomas/química
19.
Chem Sci ; 12(36): 12201-12210, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34667586

RESUMEN

Palau'amine has received a great deal of attention as an attractive synthetic target due to its intriguing molecular architecture and significant immunosuppressive activity, and we achieved its total synthesis in 2015. However, the synthesized palau'amine has not been readily applicable to the mechanistic study of immunosuppressive activity, because it requires 45 longest linear steps from a commercially available compound. Here, we report the short-step construction of the ABCDEF hexacyclic ring core of palau'amine. The construction of the CDE tricyclic ring core in a single step is achieved by our pK a concept for proceeding with unfavorable equilibrium reactions, and a palau'amine analog without the aminomethyl and chloride groups is synthesized in 20 longest linear steps from the same starting material. The palau'amine analog is confirmed to retain the immunosuppressive activity. The present synthetic approach for a palau'amine analog has the potential for use in the development of palau'amine probes for mechanistic elucidation.

20.
J Control Release ; 334: 327-334, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33957196

RESUMEN

Recently, there is an increasing interest in exosomes or extracellular vesicles as potential candidates for delivering RNAs, proteins, genes, and anticancer agents. Engineering of exosome properties is rapidly evolving as a means of expanding exosome applications. PEGylation of exosomes is a technique used to improve their in vivo stability, circulation half-lives, and sometimes to allow the binding targeting ligands to the exosome exterior. According to FDA guidelines for the development of PEGylated proteins, immunological responses to PEGylated molecules and particles should be examined. In this study, we prepared PEGylated exosomes and investigated the production of anti-PEG IgM antibodies after single i.v. injections in mice. In addition, we monitored blood concentrations and tumor accumulation of a second dose of PEGylated exosomes administered after the initial dose. Single injections of PEGylated exosomes in mice induced anti-PEG IgM production in a T cell-dependent manner. The anti-PEG IgM production decreased when the injection dose of PEGylated exosomes was further increased. Anti-PEG IgM induced by injection of PEGylated exosomes decreased blood concentrations of a second dose of PEGylated exosomes and suppressed their tumor accumulation in a C26 murine colorectal cancer model. Initial injection doses of either PEGylated liposomes or PEGylated ovalbumin (PEG-OVA), both of them induced anti-PEG IgM production, also decreased the blood concentration of PEGylated exosomes. Interestingly, anti-PEG IgM induced by injection of PEGylated exosomes did not affect the blood concentration of PEG-OVA. These results imply the importance of monitoring anti-PEG IgM when repeat PEGylated exosome doses are required and/or when PEGylated exosomes are used together with other PEGylated therapeutics.


Asunto(s)
Exosomas , Polietilenglicoles , Animales , Inmunoglobulina M , Liposomas , Ratones , Ovalbúmina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA