Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Hum Genet ; 107(6): 1149-1156, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33186543

RESUMEN

The Congenital Dyserythropoietic Anemia (CDA) Registry was established with the goal to facilitate investigations of natural history, biology, and molecular pathogenetic mechanisms of CDA. Three unrelated individuals enrolled in the registry had a syndrome characterized by CDA and severe neurodevelopmental delay. They were found to have missense mutations in VPS4A, a gene coding for an ATPase that regulates the ESCRT-III machinery in a variety of cellular processes including cell division, endosomal vesicle trafficking, and viral budding. Bone marrow studies showed binucleated erythroblasts and erythroblasts with cytoplasmic bridges indicating abnormal cytokinesis and abscission. Circulating red blood cells were found to retain transferrin receptor (CD71) in their membrane, demonstrating that VPS4A is critical for normal reticulocyte maturation. Using proband-derived induced pluripotent stem cells (iPSCs), we have successfully modeled the hematologic aspects of this syndrome in vitro, recapitulating their dyserythropoietic phenotype. Our findings demonstrate that VPS4A mutations cause cytokinesis and trafficking defects leading to a human disease with detrimental effects to erythropoiesis and neurodevelopment.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Anemia Diseritropoyética Congénita/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , ATPasas de Translocación de Protón Vacuolares/genética , Adenosina Trifosfatasas/metabolismo , Anemia Diseritropoyética Congénita/patología , Médula Ósea/patología , Células de la Médula Ósea/metabolismo , Niño , Preescolar , Citocinesis , Endosomas/metabolismo , Eritroblastos/metabolismo , Eritrocitos/citología , Eritropoyesis , Femenino , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Trastornos del Neurodesarrollo/metabolismo , Fenotipo , Transporte de Proteínas , Reticulocitos/citología
2.
Blood Adv ; 5(17): 3309-3321, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34473237

RESUMEN

Infection with adenoviruses is a common and significant complication in pediatric patients after allogeneic hematopoietic stem cell transplantation. Treatment options with traditional antivirals are limited by poor efficacy and significant toxicities. T-cell reconstitution is critical for the management of adenoviral infections, but it generally takes place months after transplantation. Ex vivo-generated virus-specific T cells (VSTs) are an alternative approach for viral control and can be rapidly generated from either a stem cell donor or a healthy third-party donor. In the context of a single-center phase 1/2 clinical trial, we treated 30 patients with a total of 43 infusions of VSTs for adenoviremia and/or adenoviral disease. Seven patients received donor-derived VSTs, 21 patients received third-party VSTs, and 2 received VSTs from both donor sources. Clinical responses were observed in 81% of patients, with a complete response in 58%. Epitope prediction and potential epitope identification for common HLA molecules helped elucidate HLA restriction in a subset of patients receiving third-party products. Intracellular interferon-γ expression in T cells in response to single peptides and response to cell lines stably transfected with a single HLA molecule demonstrated HLA-restricted CD4+ T-cell response, and these results correlated with clinical outcomes. Taken together, these data suggest that VSTs are a highly safe and effective therapy for the management of adenoviral infection in immunocompromised hosts. The trials were registered at www.clinicaltrials.gov as #NCT02048332 and #NCT02532452.


Asunto(s)
Infecciones por Adenoviridae , Trasplante de Células Madre Hematopoyéticas , Infecciones por Adenoviridae/terapia , Niño , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Interferón gamma , Trasplante de Células Madre/efectos adversos , Linfocitos T
3.
Front Pharmacol ; 11: 602985, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33708117

RESUMEN

Activation of the renin angiotensin system plays a pivotal role in the regulation of blood pressure, which is mainly attributed to the formation of angiotensin-II (Ang II). The actions of Ang II are mediated through binding to the Ang-II type 1 receptor (AT1R) which leads to increased blood pressure, fluid retention, and aldosterone secretion. In addition, Ang II is also involved in cell injury, vascular remodeling, and inflammation. The actions of Ang II could be antagonized by its conversion to the vasodilator peptide Ang (1-7), partly generated by the action of angiotensin converting enzyme 2 (ACE2) and/or neprilysin (NEP). Previous studies demonstrated increased urinary ACE2 shedding in the db/db mouse model of diabetic kidney disease. The aim of the study was to investigate whether renal and urinary ACE2 and NEP are altered in the 2K1C Goldblatt hypertensive mice. Since AT1R is highly expressed in the kidney, we also researched the effect of global deletion of AT1R on renal and urinary ACE2, NEP, and kidney injury marker (KIM-1). Hypertension and albuminuria were induced in AT1R knock out (AT1RKO) and WT mice by unilateral constriction of the renal artery of one kidney. The 24 h mean arterial blood pressure (MAP) was measured using radio-telemetry. Two weeks after 2K1C surgery, MAP and albuminuria were significantly increased in WT mice compared to AT1RKO mice. Results demonstrated a correlation between MAP and albuminuria. Unlike db/db diabetic mice, ACE2 and NEP expression and activities were significantly decreased in the clipped kidney of WT and AT1RKO compared with the contralateral kidney and sham control (p < 0.05). There was no detectable urinary ACE2 and NEP expression and activity in 2K1C mice. KIM-1 was significantly increased in the clipped kidney of WT and AT1KO (p < 0.05). Deletion of AT1R has no effect on the increased urinary KIM-1 excretion detected in 2K1C mice. In conclusion, renal injury in 2K1C Goldblatt mouse model is associated with loss of renal ACE2 and NEP expression and activity. Urinary KIM-1 could serve as an early indicator of acute kidney injury. Deletion of AT1R attenuates albuminuria and hypertension without affecting renal ACE2, NEP, and KIM-1 expression.

4.
Physiol Rep ; 8(3): e14364, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32026607

RESUMEN

Alteration in renin-angiotensin system (RAS) has been implicated in the pathophysiology of diabetic kidney disease (DKD). The deleterious actions of angiotensin II (Ang II) could be antagonized by the formation of Ang-(1-7), generated by the actions of angiotensin-converting enzyme 2 (ACE2) and neprilysin (NEP). NEP degrades several peptides, including natriuretic peptides, bradykinin, amyloid beta, and Ang I. Although combination of Ang II receptor and NEP inhibitor treatment benefits patients with heart failure, the role of NEP in renal pathophysiology is a matter of active research. NEP pathway is a potent enzyme in Ang I to Ang-(1-7) conversion in the kidney of ACE2-deficient mice, suggesting a renoprotective role of NEP. The aim of the study is to test the hypothesis that chronic hyperglycemia downregulates renal NEP protein expression and activity in db/db diabetic mice and treatment with rosiglitazone normalizes hyperglycemia, renal NEP expression, and attenuates albuminuria. Mice received rosiglitazone (20 mg kg-1  day-1 ) for 10 weeks. Western blot analysis, immunohistochemistry, and enzyme activity revealed a significant decrease in renal and urinary NEP expression and activity in 16-wk db/db mice compared with lean control (p < .0001). Rosiglitazone also attenuated albuminuria and increased renal and urinary NEP expressions (p < .0001). In conclusion, data support the hypothesis that diabetes decreases intrarenal NEP, which could have a pivotal role in the pathogenesis of DKD. Urinary NEP may be used as an index of intrarenal NEP status. The renoprotective effects of rosiglitazone could be mediated by upregulation of renal NEP expression and activity in db/db diabetic mice.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Hiperglucemia/metabolismo , Hipoglucemiantes/uso terapéutico , Neprilisina/metabolismo , Rosiglitazona/uso terapéutico , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Regulación hacia Abajo , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/farmacología , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Ratones , Neprilisina/orina , Rosiglitazona/farmacología
5.
Stem Cells Transl Med ; 8(6): 557-567, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30793529

RESUMEN

Bacterial and fungal infections are a major cause of morbidity and mortality in neutropenic patients. Donor-derived neutrophil transfusions have been used for prophylaxis or treatment for infection in neutropenic patients. However, the short half-life and the limited availability of large numbers of donor-derived neutrophils for transfusion remain a significant hurdle in the implementation of neutrophil transfusion therapy. Here, we investigate the in vitro and in vivo activity of neutrophils generated from human induced pluripotent stem cells (iPSC), a potentially unlimited resource to produce neutrophils for transfusion. Phenotypic analysis of iPSC-derived neutrophils reveal reactive oxygen species production at similar or slightly higher than normal peripheral blood neutrophils, but have an ∼50%-70% reduced Escherichia coli phagocytosis and phorbol 12-myristate 13-acetate induced formation of neutrophil extracellular traps (NET). Signaling of granulocytic precursors identified impaired AKT activation, but not ERK or STAT3, in agonist-stimulated iPSC-derived neutrophils. Expression of a constitutively activated AKT in iPSC-derived neutrophils restores most phagocytic activity and NET formation. In a model of bacterial induced peritonitis in immunodeficient mice, iPSC-derived neutrophils, with or without corrected AKT activation, migrate similarly to the peritoneal fluid as peripheral blood neutrophils, whereas the expression of activated AKT significantly improves their phagocytic activity in vivo. Stem Cells Translational Medicine 2019;8:557-567.


Asunto(s)
Neutrófilos/inmunología , Fagocitosis , Adulto , Animales , Escherichia coli/patogenicidad , Trampas Extracelulares/efectos de los fármacos , Trampas Extracelulares/metabolismo , Femenino , Factor Estimulante de Colonias de Granulocitos/farmacología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Neutrófilos/citología , Neutrófilos/metabolismo , Neutrófilos/trasplante , Peritonitis/patología , Peritonitis/terapia , Proteínas Proto-Oncogénicas c-akt/agonistas , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Acetato de Tetradecanoilforbol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA