Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Acoust Soc Am ; 135(2): 933-41, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25234901

RESUMEN

Mosquito flight produces a tone as a side effect of wing movement; this tone is also a communication signal that is frequency-modulated during courtship. Recordings of tones produced by tethered flying male and female Aedes aegypti were undertaken using pairs of pressure-gradient microphones above and below, ahead and behind, and to the left and right over a range of distances. Fundamental frequencies were close to those previously reported, although amplitudes were lower. The male fundamental frequency was higher than that of the female and males modulated it over a wider range. Analysis of harmonics shows that the first six partials were nearly always within 1 Hz of integer multiples of the fundamental, even when the fundamental was being modulated. Along the front-back axis, amplitude attenuated as a function of distance raised to the power 2.3. Front and back recordings were out of phase, as were above and below, while left and right were in phase. Recordings from ahead and behind showed quadratic phase coupling, while others did not. Finally, two methods are presented for separating simultaneous flight tones in a single recording and enhancing their frequency resolution. Implications for mosquito behavior are discussed.


Asunto(s)
Aedes/fisiología , Vuelo Animal , Sonido , Alas de Animales/fisiología , Acústica/instrumentación , Aedes/clasificación , Animales , Cortejo , Femenino , Masculino , Movimiento (Física) , Presión , Procesamiento de Señales Asistido por Computador , Espectrografía del Sonido , Factores de Tiempo , Transductores de Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA