Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 48(11): 3408-3421, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33772332

RESUMEN

PURPOSE: There is significant interest in the development of targeted alpha-particle therapies (TATs) for treatment of solid tumors. The metal chelator-peptide conjugate, DOTA-TATE, loaded with the ß-particle emitting radionuclide 177Lu ([177Lu]Lu-DOTA-TATE) is now standard care for neuroendocrine tumors that express the somatostatin receptor 2 (SSTR2) target. A recent clinical study demonstrated efficacy of the corresponding [225Ac]Ac-DOTA-TATE in patients that were refractory to [177Lu]Lu-DOTA-TATE. Herein, we report the radiosynthesis, toxicity, biodistribution (BD), radiation dosimetry (RD), and efficacy of [225Ac]Ac-DOTA-TATE in small animal models of lung neuroendocrine neoplasms (NENs). METHODS: [225Ac]Ac-DOTA-TATE was synthesized and characterized for radiochemical yield, purity and stability. Non-tumor-bearing BALB/c mice were tested for toxicity and BD. Efficacy was determined by single intravenous injection of [225Ac]Ac-DOTA-TATE into SCID mice-bearing human SSTR2 positive H727 and H69 lung NENs. RD was calculated using the BD data. RESULTS: [225Ac]Ac-DOTA-TATE was synthesized with 98% yield, 99.8% purity, and displayed 97% stability after 2 days incubation in human serum at 37 °C. All animals in the toxicity study appeared healthy 5 months post injection with no indications of toxicity, except that animals that received ≥111 kBq of [225Ac]Ac-DOTA-TATE had chronic progressive nephropathy. BD studies revealed that the primary route of elimination is by the renal route. RD calculations determined pharmacokinetics parameters and absorbed α-emission dosages from 225Ac and its daughters. For both tumor models, a significant tumor growth delay and time to experimental endpoint were observed following a single administration of [225Ac]Ac-DOTA-TATE relative to controls. CONCLUSIONS: These results suggest significant potential for the clinical translation of [225Ac]Ac-DOTA-TATE for lung NENs.


Asunto(s)
Neoplasias Pulmonares , Compuestos Organometálicos , Animales , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Octreótido/uso terapéutico , Octreótido/toxicidad , Compuestos Organometálicos/uso terapéutico , Compuestos Organometálicos/toxicidad , Radiofármacos/uso terapéutico , Radiofármacos/toxicidad , Distribución Tisular
2.
Mol Pharm ; 17(11): 4180-4188, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32960613

RESUMEN

Targeted α particle therapy (TAT) is ideal for treating disease while minimizing damage to surrounding nontargeted tissues due to short path length and high linear energy transfer (LET). We developed a TAT for metastatic uveal melanoma, targeting the melanocortin-1 receptor (MC1R), which is expressed in 94% of uveal melanomas. Two versions of the therapy are being investigated: 225Ac-DOTA-Ahx-MC1RL (225Ac-Ahx) and 225Ac-DOTA-di-d-Glu-MC1RL (225Ac-di-d-Glu). The biodistribution (BD) from each was studied and a multicompartment pharmacokinetic (PK) model was developed to describe drug distribution rates. Two groups of 16 severe combined immunodeficient (SCID) mice bearing high MC1R expressing tumors were intravenously injected with 225Ac-Ahx or 225Ac-di-d-Glu. After injection, four groups (n = 4) were euthanized at 24, 96, 144, and 288 h time points for each cohort. Tumors and 13 other organs were harvested at each time point. Isomeric γ spectra were measured in tissue samples using a scintillation γ detector and converted to α activity using factors for γ ray abundance per α decay. Time activity curves were calculated for each organ. A five-compartment PK model was built with the following compartments: blood, tumor, normal tissue, kidney, and liver. This model is characterized by a system of five ordinary differential equations using mass action kinetics, which describe uptake, intercompartmental transitions, and clearance rates. The ordinary differential equations were simultaneously solved and fit to experimental data using a genetic algorithm for optimization. The BD data show that both compounds have minimal distribution to organs at risk other than the kidney and liver. The PK parameter estimates had less than 5% error. From these data, 225Ac-Ahx showed larger and faster uptake in the liver. Both compounds had comparable uptake and clearance rates for other compartments. The BD and PK behavior for two targeted radiopharmaceuticals were investigated. The PK model fit the experimental data and provided insight into the kinetics of the compounds systematically.


Asunto(s)
Partículas alfa/uso terapéutico , Melanoma Experimental/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Radiofármacos/administración & dosificación , Radiofármacos/farmacocinética , Neoplasias de la Úvea/tratamiento farmacológico , alfa-MSH/administración & dosificación , alfa-MSH/farmacocinética , Animales , Línea Celular Tumoral , Ligandos , Melanoma/metabolismo , Melanoma/patología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Tasa de Depuración Metabólica , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Terapia Molecular Dirigida/métodos , Receptor de Melanocortina Tipo 1/metabolismo , Distribución Tisular , Resultado del Tratamiento , Carga Tumoral/efectos de los fármacos , Neoplasias de la Úvea/metabolismo , Neoplasias de la Úvea/patología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Vet Pathol ; 57(4): 586-589, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32347166

RESUMEN

During a previously reported program-wide Corynebacterium bovis outbreak, both immunocompetent depilated (dep/dep) mutant mice and transgenic mice that express the papillomavirus E6 oncoprotein became persistently infected with C. bovis. An orthokeratotic, hyperkeratotic, acanthotic dermatitis developed in the C. bovis-infected dep/dep mice, which remained C. bovis PCR-positive for >45 days prior to euthanasia as part of the program-wide C. bovis eradication effort. Since both affected strains of mice have altered skin homeostasis, immune status or the presence of hair may not alone be sufficient to explain strain susceptibility to C. bovis-related cutaneous disease. In order to avoid invalidation of preclinical studies due to C. bovis infection, it may be necessary to isolate immunodeficient mouse strains, implement facililty-wide surveillance for C. bovis, and sterilize equipment with vaporized hydrogen peroxide.


Asunto(s)
Infecciones por Corynebacterium/veterinaria , Ratones Desnudos/microbiología , Animales , Enfermedades Transmisibles/transmisión , Enfermedades Transmisibles/veterinaria , Corynebacterium , Infecciones por Corynebacterium/prevención & control , Infecciones por Corynebacterium/transmisión , Dermatitis/microbiología , Dermatitis/veterinaria , Epidermis/microbiología , Epidermis/patología , Hiperqueratosis Epidermolítica/veterinaria , Ratones , Enfermedades de los Roedores/microbiología , Piel/microbiología , Piel/patología
4.
J Biol Chem ; 287(26): 22112-22, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22566699

RESUMEN

Androgen deprivation therapy has been the standard of care in prostate cancer due to its effectiveness in initial stages. However, the disease recurs, and this recurrent cancer is referred to as castration-resistant prostate cancer (CRPC). Radiotherapy is the treatment of choice; however, in addition to androgen independence, CRPC is often resistant to radiotherapy, making radioresistant CRPC an incurable disease. The molecular mechanisms by which CRPC cells acquire radioresistance are unclear. Androgen receptor (AR)-tyrosine 267 phosphorylation by Ack1 tyrosine kinase (also known as TNK2) has emerged as an important mechanism of CRPC growth. Here, we demonstrate that pTyr(267)-AR is recruited to the ATM (ataxia telangiectasia mutated) enhancer in an Ack1-dependent manner to up-regulate ATM expression. Mice engineered to express activated Ack1 exhibited a significant increase in pTyr(267)-AR and ATM levels. Furthermore, primary human CRPCs with up-regulated activated Ack1 and pTyr(267)-AR also exhibited significant increase in ATM expression. The Ack1 inhibitor AIM-100 not only inhibited Ack1 activity but also was able to suppress AR Tyr(267) phosphorylation and its recruitment to the ATM enhancer. Notably, AIM-100 suppressed Ack1 mediated ATM expression and mitigated the growth of radioresistant CRPC tumors. Thus, our study uncovers a previously unknown mechanism of radioresistance in CRPC, which can be therapeutically reversed by a new synergistic approach that includes radiotherapy along with the suppression of Ack1/AR/ATM signaling by the Ack1 inhibitor, AIM-100.


Asunto(s)
Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/radioterapia , Proteínas Tirosina Quinasas/metabolismo , Receptores Androgénicos/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Humanos , Inmunohistoquímica/métodos , Concentración 50 Inhibidora , Masculino , Ratones , Ratones Transgénicos , Trasplante de Neoplasias , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Tolerancia a Radiación , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo
5.
Eur J Immunol ; 42(3): 681-7, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22161279

RESUMEN

Microbial adjuvants in vaccines activate key transcription factors, including NF-κB and interferon response factors (IRFs). However, the individual role of these transcription factor pathways in promoting adaptive immunity by adjuvants is not clear. It is widely believed that induction of a strong inflammatory response potentiates an adaptive immune response. In this study, we sought to determine whether activation of the pro-inflammatory inhibitor of κB kinase ß (IKKß) canonical NF-κB pathway promoted vaccine-induced immune responses. An adenovirus expressing constitutively activated IKKß (AdIKK) induced robust DC maturation and high expression of key cytokines compared with a control virus. In vivo, AdIKK triggered rapid inflammation after pulmonary infection, increased leukocyte entry into draining LNs, and enhanced early antibody and T-cell responses. Notably, AdIKK did not influence the overall magnitude of the adaptive immune response. These results indicate that induction of inflammation by IKKß/NFκB in this setting impacts the kinetics but not the magnitude of adaptive immune responses. These findings therefore help define the individual role of a key pathway induced by vaccine adjuvants in promoting adaptive immunity.


Asunto(s)
Inmunidad Adaptativa/inmunología , Adenoviridae/inmunología , Quinasa I-kappa B/inmunología , Inmunización/normas , Pulmón/inmunología , FN-kappa B/inmunología , Adenoviridae/genética , Adyuvantes Inmunológicos/farmacología , Animales , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Cinética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Organismos Libres de Patógenos Específicos
6.
J Am Assoc Lab Anim Sci ; 62(5): 395-408, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37640503

RESUMEN

Here, we combined the use of 2 technologies that have not previously been used together-a positively pressurized isolator IVC (IsoIVC-P) and a modular isolator with integrated vaporized hydrogen peroxide (VHP) technology???to develop highly tractable and scalable methods to support long-term maintenance of germfree mouse colonies and the concurrent use of germfree and gnotobiotic mice in the same room. This space-efficient system increases the practicality of microbiome studies. Specifically, the exterior surfaces of microbially similar IsoIVC-P were sterilized by using VHP prior to opening the cages and handling the mice therein. This space-efficient system increases the feasibility of microbiome studies. After over 74 wk of experimentation and handling equivalent to more than 1,379,693 germfree mouse-days, we determined that the method and practices we developed have a weekly performance metric of 0.0001 sterility breaks per husbandry unit; this rate is comparable to the isolator 'gold standard.' These data were achieved without adverse incidents while maintaining an Altered Schaedler Flora colony and multiple gnotobiotic studies involving fecal microbial transplants in the same room. Our novel IsoIVC-P???VHP workstation housing system thus improves microbiome research efficiency, eliminates hazards, and reduces risks associated with traditional methods.


Asunto(s)
Vida Libre de Gérmenes , Microbiota , Ratones , Animales , Vivienda para Animales , Esterilización , Peróxido de Hidrógeno
7.
J Immunol ; 184(7): 3582-9, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20200281

RESUMEN

Genetic studies revealed that SHIP1 limits blood cell production and immune regulatory cell numbers in vivo. We postulated that molecular targeting of SHIP1 might enhance blood cell production and increase immunoregulatory capacity. In this study, we report the identification of a chemical inhibitor of SHIP1, 3 alpha-aminocholestane (3AC). Treatment with 3AC significantly expands the myeloid immunoregulatory cell compartment and impairs the ability of peripheral lymphoid tissues to prime allogeneic T cell responses. In addition, 3AC treatment profoundly increases granulocyte production without triggering the myeloid-associated lung consolidation observed in SHIP1(-/-) mice. Moreover, 3AC also enhances RBC, neutrophil, and platelet recovery in myelosuppressed hosts. Intriguingly, we also find that chemical inhibition of SHIP1 triggers apoptosis of blood cancer cells. Thus, SHIP1 inhibitors represent a novel class of small molecules that have the potential to enhance allogeneic transplantation, boost blood cell production, and improve the treatment of hematologic malignancies.


Asunto(s)
Apoptosis/inmunología , Colestanos/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias Hematológicas/inmunología , Células Mieloides/inmunología , Monoéster Fosfórico Hidrolasas/inmunología , Animales , Western Blotting , Línea Celular Tumoral , Separación Celular , Citometría de Flujo , Humanos , Inositol Polifosfato 5-Fosfatasas , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Prueba de Cultivo Mixto de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/efectos de los fármacos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores
8.
Gut ; 60(2): 177-88, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20940287

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) can arise from genetic mutations that compromise intestinal epithelial cell integrity or immune regulation. SHIP has previously been shown to play a pivotal role in limiting the number of immunoregulatory cells and their function. AIM: To determine whether SHIP plays a pivotal role in control of immune tolerance in the gut mucosa. METHODS: Gastrointestinal pathology was assessed in three separate strains of SHIP-deficient mice and their respective wild-type (WT) littermates. Gastrointestinal pathology was analysed in SHIP-deficient hosts reconstituted with WT haematopoietic cell grafts, and WT hosts reconstituted with SHIP-deficient haematopoietic cell grafts including whole splenocytes, purified T cells or natural killer (NK) cells. Major immune cell populations were also analysed in the small intestine of SHIP-deficient mice and WT controls. RESULTS: SHIP-deficient mice developed segmental, transmural pyo-granulomatous ilietis that recapitulated classical features of Crohn's disease enteric pathology. Analysis of haematopoietic chimeras showed that WT bone marrow reconstitution of SHIP⁻/⁻ hosts corrects ileitis. Reconstitution with SHIP⁻/⁻ splenocytes transferred ileitis to WT hosts. Adoptive transfer of purified SHIP⁻/⁻ T cells or NK cells to WT hosts did not transfer ileitis. There was a paucity of both CD4 and CD8 T cells in the small intestines of SHIP-deficient mice; however, neutrophil numbers were significantly increased. CONCLUSIONS: SHIP plays a pivotal role in immune function in the intestine; further scrutiny of this pathway in IBD patients is warranted. It is proposed that SHIP-deficient ileitis results from a local deficit in mucosal T cell immunity that promotes a damaging granulocyte-monocyte inflammation of the distal ileum.


Asunto(s)
Enfermedad de Crohn/enzimología , Ileítis/enzimología , Monoéster Fosfórico Hidrolasas/deficiencia , Traslado Adoptivo/métodos , Animales , Trasplante de Médula Ósea/métodos , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/patología , Modelos Animales de Enfermedad , Ileítis/inmunología , Ileítis/patología , Íleon/inmunología , Tolerancia Inmunológica , Inmunidad Mucosa/inmunología , Inositol Polifosfato 5-Fosfatasas , Mucosa Intestinal/inmunología , Recuento de Linfocitos , Ratones , Ratones Noqueados , Neutrófilos/inmunología , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/fisiología , Subgrupos de Linfocitos T/inmunología
9.
Front Immunol ; 13: 830961, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35603158

RESUMEN

Humans homozygous for inactivating LRBA (lipopolysaccharide (LPS)-responsive beige-like anchor) mutations or with compound heterozygous mutations exhibit a spectrum of immune-related pathologies including inflammatory bowel disease (IBD). The cause of this pathology remains undefined. Here we show that disruption of the colon epithelial barrier in LRBA-deficient mice by dextran sulfate sodium (DSS) consumption leads to severe and uniformly lethal colitis. Analysis of bone marrow (BM) chimeras showed that susceptibility to lethal colitis is primarily due to LRBA deficiency in the immune compartment and not the gut epithelium. Further dissection of the immune defect in LRBA-deficient hosts showed that LRBA is essential for the expression of CTLA4 by Treg cells and IL22 and IL17 expression by ILC3 cells in the large intestine when the gut epithelium is compromised by DSS. We further show that SHIP1 agonism partially abrogates the severity and lethality of DSS-mediated colitis. Our findings indicate that enteropathy induced by LRBA deficiency has multiple causes and that SHIP1 agonism can partially abrogate the inflammatory milieu in the gut of LRBA-deficient hosts.


Asunto(s)
Colitis , Inmunodeficiencia Variable Común , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Colitis/inducido químicamente , Colitis/genética , Ratones , Mutación , Linfocitos T Reguladores
10.
J Am Assoc Lab Anim Sci ; 61(5): 412-418, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35944976

RESUMEN

Naked mole rats (Heterocephalus glaber) are a unique rodent species originating in Africa and are increasingly being used in research. Their needs and characteristics differ from those of other rodents used in research. Unique housing systems are necessary to address the special macro- and microenvironmental requirements of NMRs. Naked mole rats are one of the 2 known eusocial mammalian species, are extremely long-living, are active burrowers, and are accustomed to a subterranean environment. Unlike typical rats and mice, naked mole rats need specific, unique housing systems that mimic their natural subterranean environment to support health and longevity. Here we provide an overview of naked mole rats and a housing method that can be used in research settings.


Asunto(s)
Vivienda , Ratas Topo , Animales , Longevidad , Ratones
11.
Blood ; 113(13): 2934-44, 2009 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-19136659

RESUMEN

Regulatory T cells (T(regs)) play a pivotal role in preventing autoimmunity, graft-versus-host disease (GVHD), and organ graft rejection. We previously showed that either germline or induced SH2 domain-containing inositol 5-phosphatase (SHIP) deficiency in the host abrogates GVHD. Here we show that SHIP deficiency promotes an increase of CD4(+)CD25(+)FoxP3(+) T(regs) and CD4(+)CD25(-)FoxP3(+)"naive" T cells in the periphery that display increased CD103, glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR), OX40, and FcgammaRII/III expression. SHIP deficiency does not compromise T(reg) function because SHIP-deficient CD3(+)CD4(+)CD25(+) T(regs) are as suppressive as wild-type (WT) CD3(+)CD4(+)CD25(+) T(reg). Interestingly, like conventional T(regs), SHIP(-/-) CD4(+)CD25(-) T cells are unresponsive to major histocompatibility complex (MHC)-mismatched stimulators and suppress allogeneic responses by T cells in vitro. In addition, SHIP(-/-) CD4(+)CD25(-) T cells mediate reduced lethal GVHD on adoptive transfer to MHC-mismatched hosts. Furthermore, hosts with induced SHIP deficiency exhibit delayed rejection of MHC-mismatched cardiac grafts. Thus, SHIP is required for robust graft-versus-host and host-versus-graft responses by CD4(+) T cell and limits their immunoregulatory capacity. These findings further define the immunosuppressive mechanisms that result from SHIP deficiency and provide additional justification for targeting SHIP in clinical transplantation.


Asunto(s)
Activación de Linfocitos/genética , Monoéster Fosfórico Hidrolasas/fisiología , Linfocitos T Reguladores/inmunología , Traslado Adoptivo , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/trasplante , Factores de Transcripción Forkhead/metabolismo , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/prevención & control , Tolerancia Inmunológica/genética , Tolerancia Inmunológica/inmunología , Inositol Polifosfato 5-Fosfatasas , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones SCID , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/trasplante , Trasplante Homólogo
12.
ACS Pharmacol Transl Sci ; 4(2): 953-965, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33860213

RESUMEN

Lipophilicity is explored in the biodistribution (BD), pharmacokinetics (PK), radiation dosimetry (RD), and toxicity of an internally administered targeted alpha-particle therapy (TAT) under development for the treatment of metastatic melanoma. The TAT conjugate is comprised of the chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate), conjugated to melanocortin receptor 1 specific peptidic ligand (MC1RL) using a linker moiety and chelation of the 225Ac radiometal. A set of conjugates were prepared with a range of lipophilicities (log D 7.4 values) by varying the chemical properties of the linker. Reported are the observations that higher log D 7.4 values are associated with decreased kidney uptake, decreased absorbed radiation dose, and decreased kidney toxicity of the TAT, and the inverse is observed for lower log D 7.4 values. Animals administered TATs with lower lipophilicities exhibited acute nephropathy and death, whereas animals administered the highest activity TATs with higher lipophilicities lived for the duration of the 7 month study and exhibited chronic progressive nephropathy. Changes in TAT lipophilicity were not associated with changes in liver uptake, dose, or toxicity. Significant observations include that lipophilicity correlates with kidney BD, the kidney-to-liver BD ratio, and weight loss and that blood urea nitrogen (BUN) levels correlated with kidney uptake. Furthermore, BUN was identified as having higher sensitivity and specificity of detection of kidney pathology, and the liver enzyme alkaline phosphatase (ALKP) had high sensitivity and specificity for detection of liver damage associated with the TAT. These findings suggest that tuning radiopharmaceutical lipophilicity can effectively modulate the level of kidney uptake to reduce morbidity and improve both safety and efficacy.

13.
Cell Metab ; 32(3): 420-436.e12, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32768387

RESUMEN

Dysregulated metabolism is a key driver of maladaptive tumor-reactive T lymphocytes within the tumor microenvironment. Actionable targets that rescue the effector activity of antitumor T cells remain elusive. Here, we report that the Sirtuin-2 (Sirt2) NAD+-dependent deacetylase inhibits T cell metabolism and impairs T cell effector functions. Remarkably, upregulation of Sirt2 in human tumor-infiltrating lymphocytes (TILs) negatively correlates with response to TIL therapy in advanced non-small-cell lung cancer. Mechanistically, Sirt2 suppresses T cell metabolism by targeting key enzymes involved in glycolysis, tricarboxylic acid-cycle, fatty acid oxidation, and glutaminolysis. Accordingly, Sirt2-deficient murine T cells exhibit increased glycolysis and oxidative phosphorylation, resulting in enhanced proliferation and effector functions and subsequently exhibiting superior antitumor activity. Importantly, pharmacologic inhibition of Sirt2 endows human TILs with these superior metabolic fitness and effector functions. Our findings unveil Sirt2 as an unexpected actionable target for reprogramming T cell metabolism to augment a broad spectrum of cancer immunotherapies.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Sirtuina 2/antagonistas & inhibidores , Linfocitos T/efectos de los fármacos , Animales , Antineoplásicos/química , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Células Cultivadas , Inhibidores Enzimáticos/química , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos C57BL , Sirtuina 2/deficiencia , Sirtuina 2/metabolismo , Linfocitos T/metabolismo
14.
J Am Assoc Lab Anim Sci ; 58(2): 208-215, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30795821

RESUMEN

Exposing immunodeficient mice to opportunistic microbes introduces risks of data variability, morbidity, mortality, and the invalidation of studies involving unique human reagents, including the loss of primary human hematopoietic cells, patient-derived xenografts, and experimental therapeutics. The prevalence of 15 opportunistic microbes in a murine research facility was determined by yearlong PCR-based murine and IVC equipment surveillance comprising 1738 specimens. Of the 8 microbes detected, 3 organisms- Staphylococcus xylosus, Proteus mirabilis, and Pasteurella pneumotropica biotype Heyl-were most prevalent in both murine and IVC exhaust plenum specimens. Overall, the 8 detectable microbes were more readily PCR-detectable in IVC exhaust airways than in murine specimens, supporting the utility of PCR testing of IVC exhaust airways as a component of immunodeficient murine health surveillance. Vaporized hydrogen peroxide (VHP) exposure of IVC equipment left unassembled (that is, in a 'static-open' configuration) did not eliminate PCR detectable evidence of microbes. In contrast, VHP exposure of IVC equipment assembled 'active-closed' eliminated PCR-detectable evidence of all microbes. Ensuring data integrity and maintaining a topographically complex immunodeficient murine research environment is facilitated by knowing the prevalent opportunistic microbes to be monitored and by implementing a PCR-validated method of facility decontamination that mitigates opportunistic microbes and the risk of invalidation of studies involving immunodeficient mice.


Asunto(s)
Descontaminación/métodos , Peróxido de Hidrógeno/farmacología , Nebulizadores y Vaporizadores , Infecciones Oportunistas/veterinaria , Reacción en Cadena de la Polimerasa/veterinaria , Animales , Desinfectantes/farmacología , Ratones , Infecciones Oportunistas/microbiología , Infecciones Oportunistas/prevención & control , Reacción en Cadena de la Polimerasa/métodos , Prevalencia
15.
Comp Med ; 69(4): 276-282, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31349880

RESUMEN

Modeling chronic myelomonocytic leukemia (CMML) in immunodeficient NSGS mice relies on unique human CMML specimens and consistent murine engraftment. Only anecdotal comments have thus far supported the notion that research data may be altered by Corynebacterium bovis, an opportunistic cutaneous pathogen of immunodeficient mice. C. bovis disseminated by asymptomatic and clinically affected mice with hyperkeratotic dermatitis, resulting in resilient facility contamination and infectious recurrence. Herein we report that, compared with C. bovis PCR-negative counterparts, C. bovis PCR-positive NSGS mice developed periocular and facial hyperkeratosis and alopecia and had reduced metrics indicative of ineffective human CMML engraftment, including less thrombocytopenia, less splenomegaly, fewer CMML infiltrates in histopathologic sections of murine organs, and fewer human CD45+ cells in samples from murine spleen, bone marrow, and peripheral blood that were analyzed by flow cytometry. All CMML model metrics of engraftment were significantly reduced in the C. bovis PCR-positive cohort compared with the - negative cohort. In addition, a survey of comprehensive cancer center practices revealed that most murine facilities do not routinely test for C. bovis or broadly decontaminate the facility or its equipment after a C. bovis outbreak, thus increasing the likelihood of recurrence of invalidated studies. Our findings document that CMML engraftment of NSGS mice is diminished-and the integrity of murine research data jeopardized-by C. bovis infection of immunodeficient mice. In addition, our results indicate that C. bovis should be excluded from and not tolerated in murine facilities housing immunodeficient strains.


Asunto(s)
Infecciones por Corynebacterium/complicaciones , Corynebacterium/aislamiento & purificación , Leucemia Mielomonocítica Crónica/complicaciones , Animales , Corynebacterium/patogenicidad , Infecciones por Corynebacterium/diagnóstico , Infecciones por Corynebacterium/inmunología , Contaminación de Equipos , Humanos , Leucemia Mielomonocítica Crónica/inmunología , Ratones , Infecciones Oportunistas/complicaciones , Infecciones Oportunistas/diagnóstico , Infecciones Oportunistas/inmunología , Reacción en Cadena de la Polimerasa
16.
J Am Assoc Lab Anim Sci ; 57(5): 465-476, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30005716

RESUMEN

Facility-wide Corynebacterium bovis eradication was established using vaporized hydrogen peroxide (VHP) decontamination guided by C. bovis PCR surveillance. Prior attempts limited to culling PCR-positive mice and decontaminating affected rooms were ineffective in preventing recurrence. Because research aims often require trafficking to and use of procedural cores, a 12-mo facility-wide C. bovis PCR surveillance of 2064 specimens was performed and documented that, despite the presence of few clinically hyperkeratotic mice, 35% of the murine housing and use space was contaminated by C. bovis. The airways of IVC racks and air-handling units (AHU) provided a substantive niche for C. bovis survival, comparable to the primary enclosure, with 26% of murine and 22% of airway specimens PCR-positive for C. bovis. Equipment airway VHP sterilization in a 'flex room' required an 'active-closed' setting with the IVC rack connected to the AHU set to the VHP cycle, because 12% of specimens from 'static-open' VHP-exposed airways remained PCR-positive for C. bovis, whereas 0% of specimens from active-closed VHP exposures were positive. VHP decontamination of the 29,931-ft2 facility was completed in 2 mo. C. bovis PCR testing of IVC exhaust plenums for 200 d in previously C. bovis-affected rooms confirmed that none of the 259 specimens tested were PCR-positive for the organism. Monthly surveillance identified a single recurrence during June 2017 (month 9), ensuring rapid culling of C. bovis PCR-positive mice and acute VHP decontamination of equipment and rooms. Molecular persistence of C. bovis was resolved in procedural and personnel areas, and no murine or housing specimens tested C. bovis PCR-positive during study months 11 and 12. Furthermore, since the conclusion of the 12-mo study, none of the 452 additional murine, cell biologic, environmental, and monthly equipment surveillance specimens tested were C. bovis PCR-positive, documenting an 11-mo period of facility-wide C. bovis eradication to date. Study invalidation due to C. bovis can be avoided through PCR surveillance for the organism, immediate culling of PCR-positive mice, and acute VHP decontamination of affected areas.


Asunto(s)
Corynebacterium/efectos de los fármacos , Desinfección , Vivienda para Animales , Peróxido de Hidrógeno/farmacología , Animales , Descontaminación , Peróxido de Hidrógeno/análisis , Nebulizadores y Vaporizadores , Reacción en Cadena de la Polimerasa
17.
Front Immunol ; 9: 2550, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30631319

RESUMEN

Research using humanized mice has advanced our knowledge and understanding of human haematopoiesis, non-adaptive and adaptive immunity, autoimmunity, infectious disease, cancer biology, and regenerative medicine. Challenges posed by the human-malaria parasite Plasmodium falciparum include its complex life cycle, the evolution of drug resistance against anti-malarials, poor diagnosis, and a lack of effective vaccines. Advancements in genetically engineered and immunodeficient mouse strains, have allowed for studies of the asexual blood stage, exoerythrocytic stage and the transition from liver-to-blood stage infection, in a single vertebrate host. This review discusses the process of "humanization" of various immunodeficient/transgenic strains and their contribution to translational biomedical research. Our work reviews the strategies employed to overcome the remaining-limitations of the developed human-mouse chimera(s).


Asunto(s)
Malaria Falciparum/inmunología , Ratones SCID/fisiología , Plasmodium falciparum/fisiología , Animales , Quimera , Modelos Animales de Enfermedad , Ingeniería Genética , Humanos , Estadios del Ciclo de Vida , Ratones , Investigación Biomédica Traslacional
18.
J Am Assoc Lab Anim Sci ; 56(6): 742-751, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29256369

RESUMEN

Vaporized hydrogen peroxide (VHP) is used to decontaminate clinical, biocontainment, and research animal rooms and equipment. To assist with its implementation in a murine facility, we developed a safe and effective method of VHP sterilization of IVC racks and air handling units (AHU). Safety of VHP decontamination was assessed by ensuring VHP levels dissipated to less than 1 ppm in the room prior to personnel reentry and inside the primary enclosure prior to the return of mice; this condition occurred at least 18 h after the VHP cycle. Efficacy of VHP sterilization was assessed by using chemical indicators, biologic indicators, and PCR testing for Staphylococcus xylosus, a commensal organism of murine skin and an opportunistic pathogen, which was present in 160 of 172 (93%) of specimens from occupied IVC racks and the interior surfaces of in-use AHU. Neither mechanized washing nor hand-sanitizing eradicated S. xylosus from equipment airway interiors, with 17% to 24% of specimens remaining PCR-positive for S. xylosus. 'Static-open' VHP exposure of sanitized equipment did not ensure its sterilization. In contrast, 'active-closed' VHP exposure, in which IVC racks were assembled, sealed, and connected to AHU set to the VHP cycle, increased the proportion of chemical indicators that detected sterilizing levels of VHP inside the assembled equipment, and significantly decreased PCR-detectable S. xylosus inside the equipment. Supplementing bulk steam sterilization of the primary enclosure with VHP sterilization of the secondary housing equipment during room change-outs may help to mitigate opportunistic agents that jeopardize studies involving immunodeficient strains.


Asunto(s)
Descontaminación/métodos , Vivienda para Animales , Peróxido de Hidrógeno/análisis , Ratones , Staphylococcus/fisiología , Animales , Descontaminación/instrumentación , Peróxido de Hidrógeno/toxicidad , Síndromes de Inmunodeficiencia/inmunología , Síndromes de Inmunodeficiencia/veterinaria , Ratones/inmunología , Staphylococcus/efectos de los fármacos
19.
Sci Signal ; 10(500)2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-29018171

RESUMEN

The success of immunotherapy in some cancer patients has revealed the profound capacity for cytotoxic lymphocytes to eradicate malignancies. Various immunotherapies work by blocking key checkpoint proteins that suppress immune cell activity. The phosphatase SHIP1 (SH2-containing inositol polyphosphate 5-phosphatase) limits signaling from receptors that activate natural killer (NK) cells and T cells. However, unexpectedly, genetic ablation studies have shown that the effector functions of SHIP1-deficient NK and T cells are compromised in vivo. Because chronic activation of immune cells renders them less responsive to activating signals (a host mechanism to avoid autoimmunity), we hypothesized that the failure of SHIP1 inhibition to induce antitumor immunity in those studies was caused by the permanence of genetic ablation. Accordingly, we found that reversible and pulsatile inhibition of SHIP1 with 3-α-aminocholestane (3AC; "SHIPi") increased the antitumor response of NK and CD8+ T cells in vitro and in vivo. Transient SHIP1 inhibition in mouse models of lymphoma and colon cancer improved the median and long-term tumor-free survival rates. Adoptive transfer assays showed evidence of immunological memory to the tumor in hematolymphoid cells from SHIPi-treated, long-term surviving mice. The findings suggest that a pulsatile regimen of SHIP1 inhibition might be an effective immunotherapy in some cancer patients.


Asunto(s)
Neoplasias del Colon/prevención & control , Células Asesinas Naturales/inmunología , Linfoma/prevención & control , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/fisiología , Linfocitos T/inmunología , Animales , Neoplasias del Colon/inmunología , Neoplasias del Colon/mortalidad , Neoplasias del Colon/patología , Genes Codificadores de la Cadena alfa de los Receptores de Linfocito T , Linfoma/inmunología , Linfoma/mortalidad , Linfoma/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/antagonistas & inhibidores , Tasa de Supervivencia
20.
Cancer Res ; 63(12): 3021-5, 2003 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-12810620

RESUMEN

p21(Cip1) is a cyclin-dependent kinase inhibitor whose abundance increases in cells exposed to radiation or other DNA-damaging agents. Such increases activate a G1 checkpoint, which allows time for DNA repair before S phase entry. By inhibiting cell cycle progression, p21(Cip1) potentially suppresses tumorigenesis, and in support, we show that p21(Cip1) heterozygous and nullizygous mice develop more tumors than do wild-type mice when exposed to a single dose of gamma-irradiation. Importantly, we also show that p21(Cip1) nullizygosity increases the incidence of metastatic tumors in irradiated mice. We suggest that p21(Cip1) is haploinsufficient for tumor suppression and functions as an antimetastatic agent.


Asunto(s)
Ciclinas/fisiología , Eliminación de Gen , Genes cdc , Metástasis de la Neoplasia/genética , Neoplasias Inducidas por Radiación/patología , Tolerancia a Radiación/genética , Animales , Transformación Celular Neoplásica/efectos de la radiación , Cruzamientos Genéticos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Ciclinas/genética , Daño del ADN , Reparación del ADN , Rayos gamma/efectos adversos , Predisposición Genética a la Enfermedad , Genotipo , Haplotipos/genética , Ratones , Ratones Endogámicos C57BL , Neoplasias Inducidas por Radiación/genética , Especificidad de Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA