Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36768497

RESUMEN

The [N,N'-disalicylidene-1,2-phenylenediamine]iron(III) ([salophene]iron(III)) derivatives 1-4 with anionic axial ligands (A = Cl-, NO3-, SCN-, CH3COO-) and complexes 5 and 6 with neutral ligands (A = imidazole, 1-methylimidazole) as well as the µ-oxo dimer 7 inhibited proliferation, reduced metabolic activity, and increased mitochondrial reactive oxygen species. Ferroptosis as part of the mode of action was identified by inhibitor experiments, together with induction of lipid peroxidation and diminished mitochondrial membrane potential. No differences in activity were observed for all compounds except 4, which was slightly less active. Electrochemical analyses revealed for all compounds a fast attachment of the solvent dimethyl sulfoxide and a release of the axial ligand A. In contrast, in dichloromethane and acetonitrile, ligand exchange did not take place, as analyzed by measurements of the standard potential for the iron(III/II) redox reaction.


Asunto(s)
Ferroptosis , Hierro , Hierro/química , Ligandos , Oxidación-Reducción
2.
Anal Biochem ; 406(2): 124-31, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20619249

RESUMEN

Current quantitative metabolomic research in brain tissue is challenged by several analytical issues. To compare data of metabolite pattern, ratios of individual metabolite concentrations and composed classifiers characterizing a distinct state, standardized workup conditions, and extraction medium are crucial. Differences in physicochemical properties of individual compounds and compound classes such as polarity determine extraction yields and, thus, ratios of compounds with varying properties. Also, variations in suppressive effects related to coextracted matrix components affect standards or references and their concentration-dependent responses.The selection of a common tissue extraction protocol is an ill-posed problem because it can be regarded as a multiple objective decision depending on factors such as sample handling practicability, measurement precision, control of matrix effects, and relevance of the chemical assay. This study systematically evaluates the impact of extraction solvents and the impact of the complex brain tissue on measured metabolite levels, taking into account ionization efficiency as well as challenges encountered in the trace-level quantification of the analytes in brain matrices. In comparison with previous studies that relied on nontargeted platforms, consequently emphasizing the global behavior of the metabolomic fingerprint, here we focus on several series of metabolites spanning over extensive polarity, concentration, and molecular mass ranges.


Asunto(s)
Investigación Biomédica , Encéfalo/metabolismo , Espectrometría de Masas/métodos , Metabolómica/métodos , Animales , Animales Recién Nacidos , Metaboloma , Solventes , Sus scrofa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA