Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Microb Ecol ; 86(2): 1447-1452, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36409329

RESUMEN

Methane (CH4) oxidation by methanotrophic bacteria in forest soils is the largest biological sink for this greenhouse gas on earth. However, the compaction of forest soils by logging traffic has previously been shown to reduce the potential rate of CH4 uptake. This change could be due to not only a decrease of methanotrophs but also an increase in methanogen activity. In this study, we investigated whether the decrease in CH4 uptake by forest soils, subjected to compaction by heavy machinery 7 years earlier, can be explained by quantitative and qualitative changes in methanogenic and methanotrophic communities. We measured the functional gene abundance and polymorphism of CH4 microbial oxidizers (pmoA) and producers (mcrA) at different depths and during different seasons. Our results revealed that the soil compaction effect on the abundance of both genes depended on season and soil depth, contrary to the effect on gene polymorphism. Bacterial pmoA abundance was significantly lower in the compacted soil than in the controls across all seasons, except in winter in the 0-10 cm depth interval and in summer in the 10-20 cm depth interval. In contrast, archaeal mcrA abundance was higher in compacted than control soil in winter and autumn in the two soil depths investigated. This study shows the usefulness of using pmoA and mcrA genes simultaneously in order to better understand the spatial and temporal variations of soil CH4 fluxes and the potential effect of physical disturbances.


Asunto(s)
Euryarchaeota , Suelo , Estaciones del Año , Bacterias/genética , Oxidación-Reducción , Bosques , Metano , Microbiología del Suelo
2.
J Exp Bot ; 71(6): 2028-2039, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32211864

RESUMEN

Rubber trees (Hevea brasiliensis) are the main source of natural rubber, extracted from latex, which exudes from the trunk after tapping. Tapped trees require large amounts of carbon (C) to regenerate the latex after its collection. Knowing the contribution of C sources involved in latex biosynthesis will help in understanding how rubber trees face this additional C demand. Whole crown 13CO2 pulse labelling was performed on 4-year-old rubber trees in June, when latex production was low, and in October, when it was high. 13C content was quantified in the foliage, phloem sap, wood, and latex. In both labelling periods, 13C was recovered in latex just after labelling, indicating that part of the carbohydrate was directly allocated to latex. However, significant amounts of 13C were still recovered in latex after 100 d and the peak was reached significantly later than in phloem sap, demonstrating the contribution of a reserve pool as a source of latex C. The contribution of new photosynthates to latex regeneration was faster and higher when latex metabolism was well established, in October, than in June. An improved understanding of C dynamics and the source-sink relationship in rubber tree is crucial to adapt tapping system practices and ensure sustainable latex production.


Asunto(s)
Hevea , Carbono , Látex , Goma , Estaciones del Año
3.
New Phytol ; 221(3): 1447-1456, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30267569

RESUMEN

Upland forest soils are known to be the main biological sink for methane, but studies have shown that net methane uptake of a forest ecosystem can be reduced when methane emissions by vegetation are considered. We estimated the methane budget of a young oak plantation by considering tree stems but also the understorey vegetation. Automated chambers connected to a laser-based gas analyser, on tree stems, bare soil and soil covered with understorey vegetation, recorded CH4 fluxes for 7 months at 3 h intervals. Tree stem emissions were low and equated to only 0.1% of the soil sink. Conversely, the presence of understorey vegetation increased soil methane uptake. This plant-driven enhancement of CH4 uptake occurred when the soil was consuming methane. At the stand level, the methane budget shifted from -1.4 ± 0.4 kg C ha-1 when we upscaled data obtained only on bare soil, to -2.9 ± 0.6 kg C ha-1 when we considered soil area that was covered with understorey vegetation. These results indicate that aerenchymatous plant species, which are known to reduce the methane sink in wetlands, actually increase soil methane uptake two-fold in an upland forest by enhancing methane and oxygen transport and/or by promoting growth of methanotrophic populations.


Asunto(s)
Bosques , Metano/metabolismo , Plantas/metabolismo , Clima , Tallos de la Planta/metabolismo , Quercus/metabolismo , Estaciones del Año , Suelo
4.
New Phytol ; 213(1): 140-153, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27513732

RESUMEN

13 CO2 pulse-labelling experiments were performed in situ on adult beeches (Fagus sylvatica) and pines (Pinus pinaster) at different phenological stages to study seasonal and interspecific short-term dynamics and partitioning of recently assimilated carbon (C) in leaves. Polar fraction (PF, including soluble sugars, amino acids and organic acids) and starch were purified from foliage sampled during a 10-d chase period. C contents, isotopic compositions and 13 C dynamics parameters were determined in bulk foliage, PF and starch. Decrease in 13 C amount in bulk foliage followed a two-pool exponential model highlighting 13 C partitioning between 'mobile' and 'stable' pools, the relative proportion of the latter being maximal in beech leaves in May. Early in the growing season, new foliage acted as a strong C sink in both species, but although young leaves and needles were already photosynthesizing, the latter were still supplied with previous-year needle photosynthates 2 months after budburst. Mean 13 C residence times (MRT) were minimal in summer, indicating fast photosynthate export to supply perennial organ growth in both species. In late summer, MRT differed between senescing beech leaves and overwintering pine needles. Seasonal variations of 13 C partitioning and dynamics in field-grown tree foliage are closely linked to phenological differences between deciduous and evergreen trees.


Asunto(s)
Carbono/metabolismo , Fagus/metabolismo , Pinus/metabolismo , Hojas de la Planta/metabolismo , Estaciones del Año , Isótopos de Carbono/metabolismo , Cinética , Almidón/metabolismo
5.
AoB Plants ; 15(4): plad046, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37497441

RESUMEN

Phyllostachys edulis is a spectacularly fast-growing species that completes its height growth within 2 months after the shoot emerges without producing leaves (fast-growing period, FGP). This phase was considered heterotrophic, with the carbon necessary for the growth being transferred from the mature culms via the rhizomes, although previous studies observed key enzymes and anatomical features related to C4-carbon fixation in developing culms. We tested whether C4-photosynthesis or dark-CO2 fixation through anaplerotic reactions significantly contributes to the FGP, resulting in differences in the natural abundance of δ13C in bulk organic matter and organic compounds. Further, pulse-13CO2-labelling was performed on developing culms, either from the surface or from the internal hollow, to ascertain whether significant CO2 fixation occurs in developing culms. δ13C of young shoots and developing culms were higher (-26.3 to -26.9 ‰) compared to all organs of mature bamboos (-28.4 to -30.1 ‰). Developing culms contained chlorophylls, most observed in the skin tissues. After pulse-13CO2-labelling, the polar fraction extracted from the skin tissues was slightly enriched in 13C, and only a weak 13C enrichment was observed in inner tissues. Main carbon source sustaining the FGP was not assimilated by the developing culm, while a limited anaplerotic fixation of respired CO2 cannot be excluded and is more likely than C4-photosynthetic carbon fixation.

6.
New Phytol ; 194(3): 647-653, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22356353

RESUMEN

• An unbiased partitioning of autotrophic and heterotrophic components of soil CO(2) efflux is important to estimate forest carbon budgets and soil carbon sequestration. The contribution of autotrophic sources to soil CO(2) efflux (F(A)) may be underestimated during the daytime as a result of internal transport of CO(2) produced by root respiration through the transpiration stream. • Here, we tested the hypothesis that carbon isotope composition of soil CO(2) efflux (δ(FS)) in a Eucalyptus plantation grown on a C(4) soil is enriched during the daytime, which will indicate a decrease in F(A) during the periods of high transpiration. • Mean δ(FS) of soil CO(2) efflux decreased to -25.7‰ during the night and increased to -24.7‰ between 11:00 and 15:00 h when the xylem sap flux density was at its maximum. • Our results indicate a decrease in the contribution of root respiration to soil CO(2) efflux during the day that may be interpreted as a departure of root-produced CO(2) in the transpiration stream, leading to a 17% underestimation of autotrophic contribution to soil CO(2) efflux on a daily timescale.


Asunto(s)
Procesos Autotróficos/fisiología , Dióxido de Carbono/metabolismo , Eucalyptus/fisiología , Procesos Heterotróficos/fisiología , Transpiración de Plantas/fisiología , Suelo/química , Transporte Biológico , Ciclo del Carbono , Isótopos de Carbono/análisis , Respiración de la Célula , Clima , Congo , Eucalyptus/metabolismo , Eucalyptus/efectos de la radiación , Humedad , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de la radiación , Radiación , Temperatura , Xilema/metabolismo , Xilema/fisiología , Xilema/efectos de la radiación
7.
Tree Physiol ; 42(4): 784-796, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-34635913

RESUMEN

Tree species that close stomata early in response to drought are likely to suffer from an imbalance between limited carbohydrate supply due to reduced photosynthesis and metabolic demand. Our objective was to clarify the dynamic responses of non-structural carbohydrates to drought in a water-saving species, the hinoki cypress (Chamaecyparis obtusa Sieb. et Zucc.). To this end, we pulse-labeled young trees with 13CO2 10 days after the beginning of the drought treatment. Trees were harvested 7 days later, early during drought progression, and 86 days later when they had suffered from a long and severe drought. The labeled carbon (C) was traced in phloem extract, in the organic matter and starch of all the organs, and in the soluble sugars (sucrose, glucose and fructose) of the most metabolically active organs (foliage, green branches and fine roots). No drought-related changes in labeled C partitioning between belowground and aboveground organs were observed. The C allocation between non-structural carbohydrates was altered early during drought progression: starch concentration was lower by half in the photosynthetic organs, while the concentration of almost all soluble sugars tended to increase. The preferential allocation of labeled C to glucose and fructose reflected an increased demand for soluble sugars for osmotic adjustment. After 3 months of a lethal drought, the concentrations of soluble sugars and starch were admittedly lower in drought-stressed trees than in the controls, but the pool of non-structural carbohydrates was far from completely depleted. However, the allocation to storage had been impaired by drought; photosynthesis and the sugar translocation rate had also been reduced by drought. Failure to maintain cell turgor through osmoregulation and to refill embolized xylem due to the depletion in soluble sugars in the roots could have resulted in tree mortality in hinoki cypress, though the total pool of carbohydrate was not completely depleted.


Asunto(s)
Chamaecyparis , Sequías , Carbohidratos , Carbono/metabolismo , Chamaecyparis/metabolismo , Fructosa , Glucosa , Hojas de la Planta/fisiología , Almidón/metabolismo , Azúcares/metabolismo , Árboles/fisiología
8.
New Phytol ; 190(1): 181-192, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21231935

RESUMEN

Phloem is the main pathway for transferring photosynthates belowground. In situ(13) C pulse labelling of trees 8-10 m tall was conducted in the field on 10 beech (Fagus sylvatica) trees, six sessile oak (Quercus petraea) trees and 10 maritime pine (Pinus pinaster) trees throughout the growing season. Respired (13) CO2 from trunks was tracked at different heights using tunable diode laser absorption spectrometry to determine time lags and the velocity of carbon transfer (V). The isotope composition of phloem extracts was measured on several occasions after labelling and used to estimate the rate constant of phloem sap outflux (kP ). Pulse labelling together with high-frequency measurement of the isotope composition of trunk CO2 efflux is a promising tool for studying phloem transport in the field. Seasonal variability in V was predicted in pine and oak by bivariate linear regressions with air temperature and soil water content. V differed among the three species consistently with known differences in phloem anatomy between broadleaf and coniferous trees. V increased with tree diameter in oak and beech, reflecting a nonlinear increase in volumetric flow with increasing bark cross-sectional area, which suggests changes in allocation pattern with tree diameter in broadleaf species. Discrepancies between V and kP indicate vertical changes in functional phloem properties.


Asunto(s)
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Marcaje Isotópico , Estaciones del Año , Árboles/metabolismo , Biomasa , Isótopos de Carbono/metabolismo , Respiración de la Célula , Fagus/metabolismo , Cinética , Floema/metabolismo , Pinus/metabolismo , Corteza de la Planta/anatomía & histología , Extractos Vegetales/metabolismo , Quercus/metabolismo , Especificidad de la Especie , Temperatura , Factores de Tiempo
9.
J Exp Bot ; 62(15): 5335-46, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21841176

RESUMEN

Mesophyll conductance (g(m)) is now recognized as an important limiting process for photosynthesis, as it results in a significant decrease of CO(2) diffusion from substomatal cavities where water evaporation occurs, to chloroplast stroma. Over the past decade, an increasing number of studies proposed that g(m) can vary in the short term (e.g. minutes), but these variations are still controversial, especially those potentially induced by changing CO(2) and irradiance. In this study, g(m) data estimated with online (13)C discrimination recorded with a tunable diode laser absorption spectrometer (TDL-AS) during leaf gas exchange measurements, and based on the single point method, are presented. The data were obtained with three Eucalyptus species. A 50% decrease in g(m) was observed when the CO(2) mole fraction was increased from 300 µmol mol(-1) to 900 µmol mol(-1), and a 60% increase when irradiance was increased from 200 µmol mol(-1) to 1100 µmol mol(-1) photosynthetic photon flux density (PPFD). The relative contribution of respiration and photorespiration to overall (13)C discrimination was also estimated. Not taking this contribution into account may lead to a 50% underestimation of g(m) but had little effect on the CO(2)- and irradiance-induced changes. In conclusion, (i) the observed responses of g(m) to CO(2) and irradiance were not artefactual; (ii) the respiratory term is important to assess absolute values of g(m) but has no impact on the responses to CO(2) and PPFD; and (iii) increasing irradiance and reducing the CO(2) mole fraction results in rapid increases in g(m) in Eucalyptus seedlings.


Asunto(s)
Dióxido de Carbono/metabolismo , Eucalyptus/metabolismo , Hojas de la Planta/metabolismo , Plantones/metabolismo , Modelos Teóricos , Fotosíntesis
10.
J Exp Bot ; 62(11): 3941-55, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21511904

RESUMEN

The maintenance in the long run of a positive carbon balance under very low irradiance is a prerequisite for survival of tree seedlings below the canopy or in small gaps in a tropical rainforest. To provide a quantitative basis for this assumption, experiments were carried out to determine whether construction cost (CC) and payback time for leaves and support structures, as well as leaf life span (i) differ among species and (ii) display an irradiance-elicited plasticity. Experiments were also conducted to determine whether leaf life span correlates to CC and payback time and is close to the optimal longevity derived from an optimization model. Saplings from 13 tropical tree species were grown under three levels of irradiance. Specific-CC was computed, as well as CC scaled to leaf area at the metamer level. Photosynthesis was recorded over the leaf life span. Payback time was derived from CC and a simple photosynthesis model. Specific-CC displayed only little interspecific variability and irradiance-elicited plasticity, in contrast to CC scaled to leaf area. Leaf life span ranged from 4 months to >26 months among species, and was longest in seedlings grown under lowest irradiance. It was always much longer than payback time, even under the lowest irradiance. Leaves were shed when their photosynthesis had reached very low values, in contrast to what was predicted by an optimality model. The species ranking for the different traits was stable across irradiance treatments. The two pioneer species always displayed the smallest CC, leaf life span, and payback time. All species displayed a similar large irradiance-elicited plasticity.


Asunto(s)
Hojas de la Planta/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Árboles/efectos de la radiación , Carbono/metabolismo , Guyana Francesa , Luz , Fotosíntesis , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Plantones/crecimiento & desarrollo , Plantones/fisiología , Plantones/efectos de la radiación , Especificidad de la Especie , Árboles/fisiología , Clima Tropical
11.
Plant Environ Interact ; 2(3): 112-124, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37283860

RESUMEN

The inner bark plays important roles in tree stems, including radial exchange of water with the xylem and translocation of carbohydrates. Both processes affect the water content and the thickness of the inner bark on a diurnal basis. For the first time, we simultaneously measured the diurnal variations in the inner bark thickness of hinoki cypress (Chamaecyparis obtusa) by using point dendrometers and those of local xylem potential by using stem psychrometers located next to the dendrometers to determine how these variations were related to each other, to phloem turgor and carbohydrate transport. We also estimated the axial hydrostatic pressure gradient by measuring the osmolality of the sap extracted from the inner bark. The inner bark shrunk during the day and swelled during the night with an amplitude related to day-to-day and seasonal variations in climate. The relationship between changes in xylem water potential and inner bark thickness exhibited a hysteresis loop during the day with a median lag of 2 h. A phloem turgor-related signal can be retrieved from the diurnal variations in the inner bark thickness, which was higher at the upper than at the lower position along the trunk. However, a downward hydrostatic pressure gradient was only observed at dawn, suggesting diurnal variations in the phloem sap flow velocity.

12.
Tree Physiol ; 29(11): 1433-45, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19797042

RESUMEN

The study of the fate of assimilated carbon in respiratory fluxes in the field is needed to resolve the residence and transfer times of carbon in the atmosphere-plant-soil system in forest ecosystems, but it requires high frequency measurements of the isotopic composition of evolved CO2. We developed a closed transparent chamber to label the whole crown of a tree and a labelling system capable of delivering a 3-h pulse of 99% 13CO2 in the field. The isotopic compositions of trunk and soil CO2 effluxes were recorded continuously on two labelled and one control trees by a tuneable diode laser absorption spectrometer during a 2-month chase period following the late summer labelling. The lag times for trunk CO2 effluxes are consistent with a phloem sap velocity of about 1 m h(-1). The isotopic composition (delta13C) of CO2 efflux from the trunk was maximal 2-3 days after labelling and declined thereafter following two exponential decays with a half-life of 2-8 days for the first and a half-life of 15-16 days for the second. The isotopic composition of the soil CO2 efflux was maximal 3-4 days after labelling and the decline was also well fitted with a sum of two exponential functions with a half-life of 3-5 days for the first exponential and a half-life of 16-18 days for the second. The amount of label recovered in CO2 efflux was around 10-15% of the assimilated 13CO2 for soil and 5-13% for trunks. As labelling occurred late in the growing season, substantial allocation to storage is expected.


Asunto(s)
Carbono/metabolismo , Fagus/metabolismo , Carbono/análisis , Carbono/química , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Clima , Semivida , Láseres de Semiconductores , Fotosíntesis , Suelo , Análisis Espectral/métodos , Factores de Tiempo
13.
Tree Physiol ; 29(11): 1395-405, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19744973

RESUMEN

Enhanced sapling growth in advance regeneration requires gaps in the canopy, but is often delayed after canopy opening, because acclimation of saplings to the new environment is gradual and may last for several years. Canopy opening is expected to result in an increased transpiration because of a larger climatic demand and a higher stomatal conductance linked to the higher rates of photosynthesis. Therefore, we focused on the changes in water relations and the hydraulic properties of beech (Fagus sylvatica L.) saplings during 2 years after canopy opening. We tested the hypothesis that an increase in leaf-specific hydraulic conductance and a decrease in vulnerability to cavitation occur to sustain an enhanced transpiration. Hydraulic conductance of defoliated shoots, vulnerability to cavitation, size and density of xylem vessels as well as stomatal conductance were recorded on saplings growing in shade (S saplings) or in gaps created by opening the canopy (shade-to-light, SL saplings). Hydraulic conductance per unit cross-sectional area (K(AS)) did not differ in the shoots of S and SL saplings. But a higher ratio stem cross-sectional area/leaf area resulted in a higher leaf-specific hydraulic conductance of the shoots (K(AL)) of SL saplings. Contrary to expectations, vulnerability to cavitation increased transitorily in stems during the first year after canopy opening and no difference was observed between the two treatments in light-saturated stomatal conductance. During the second year, vulnerability to cavitation was similar in the S and SL saplings and light-saturated stomatal conductance increased in SL saplings. These results demonstrate a release of the hydraulic constraints after canopy opening with an adjustment of the ratio stem cross-sectional area/leaf area. But the larger vulnerability to cavitation during the first year could limit stomatal opening and therefore the ability of beech saplings to use the available light for photosynthesis and could therefore partly explain why the growth increase was delayed to the second growing season after canopy opening.


Asunto(s)
Fagus/fisiología , Regeneración , Agua/metabolismo , Aclimatación , Biomasa , Clima , Fagus/anatomía & histología , Fagus/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología
14.
Methods Mol Biol ; 2014: 145-151, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31197793

RESUMEN

The difference in time lags between a labeling pulse of 13CO2 of the foliage and the appearance of labeled C in the respiration at different locations along the stem of a tall plant is used to estimate at which velocities the isotope tracer, i.e., the labeled carbohydrates, are transported in the phloem sap. Here we describe a method for pulse-labeling tall plants in the field and subsequently tracing 13C in the respiratory efflux of CO2.


Asunto(s)
Isótopos de Carbono , Floema/metabolismo , Fenómenos Fisiológicos de las Plantas , Transporte Biológico , Carbono , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Fotosíntesis , Árboles
15.
Tree Physiol ; 39(2): 320-331, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29474703

RESUMEN

At stand level, carbon translocation in tree stems has to match canopy photosynthesis and carbohydrate requirements to sustain growth and the physiological activities of belowground sinks. This study applied the Hagen-Poiseuille equation to the pressure-flow hypothesis to estimate phloem carbon translocation and evaluate what percentage of canopy photosynthate can be transported belowground in a hinoki cypress (Chamaecyparis obtusa Sieb. et Zucc.) stand. An anatomical study revealed that, in contrast to sieve cell density, conductive phloem thickness and sieve cell hydraulic diameter at 1.3 m in height increased with increasing tree diameter, as did the concentration of soluble sugars in the phloem sap. At tree level, hydraulic conductivity increased by two orders of magnitude from the smallest to the largest trees in the stand, resulting in a stand-level hydraulic conductance of 1.7 × 10-15 m Pa-1 s-1. The osmotic potential of the sap extracted from the inner bark was -0.75 MPa. Assuming that phloem water potential equalled foliage water potential at predawn, the turgor pressure in the phloem at 1.3 m in height was estimated at 0.22 MPa, 0.59 MPa lower than values estimated in the foliage. With this maximal turgor pressure gradient, which would be lower during day-time when foliage water potential drops, the estimated stand-level rate of carbon translocation was 2.0 gC m-2 day-1 (30% of daily gross canopy photosynthesis), at a time of the year when aboveground growth and related respiration is thought to consume a large fraction of photosynthate, at the expense of belowground activity. Despite relying on some assumptions and approximations, this approach, when coupled with measurements of canopy photosynthesis, may further be used to provide qualitative insight into the seasonal dynamics of belowground carbon allocation.


Asunto(s)
Carbono/metabolismo , Chamaecyparis/metabolismo , Floema/metabolismo , Árboles/metabolismo , Transporte Biológico , Chamaecyparis/anatomía & histología , Floema/anatomía & histología , Fotosíntesis , Árboles/anatomía & histología , Agua/metabolismo
16.
Tree Physiol ; 39(2): 173-191, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30726983

RESUMEN

On-going climate change is increasing the risk of drought stress across large areas worldwide. Such drought events decrease ecosystem productivity and have been increasingly linked to tree mortality. Understanding how trees respond to water shortage is key to predicting the future of ecosystem functions. Phloem is at the core of the tree functions, moving resources such as non-structural carbohydrates, nutrients, and defence and information molecules across the whole plant. Phloem function and ability to transport resources is tightly controlled by the balance of carbon and water fluxes within the tree. As such, drought is expected to impact phloem function by decreasing the amount of available water and new photoassimilates. Yet, the effect of drought on the phloem has received surprisingly little attention in the last decades. Here we review existing knowledge on drought impacts on phloem transport from loading and unloading processes at cellular level to possible effects on long-distance transport and consequences to ecosystems via ecophysiological feedbacks. We also point to new research frontiers that need to be explored to improve our understanding of phloem function under drought. In particular, we show how phloem transport is affected differently by increasing drought intensity, from no response to a slowdown, and explore how severe drought might actually disrupt the phloem transport enough to threaten tree survival. Because transport of resources affects other organisms interacting with the tree, we also review the ecological consequences of phloem response to drought and especially predatory, mutualistic and competitive relations. Finally, as phloem is the main path for carbon from sources to sink, we show how drought can affect biogeochemical cycles through changes in phloem transport. Overall, existing knowledge is consistent with the hypotheses that phloem response to drought matters for understanding tree and ecosystem function. However, future research on a large range of species and ecosystems is urgently needed to gain a comprehensive understanding of the question.


Asunto(s)
Sequías , Floema/fisiología , Árboles/fisiología , Células Vegetales/fisiología
17.
Tree Physiol ; 39(2): 201-210, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29931112

RESUMEN

Phloem failure has recently been recognized as one of the mechanisms causing tree mortality under drought, though direct evidence is still lacking. We combined 13C pulse-labelling of 8-year-old beech trees (Fagus sylvatica L.) growing outdoors in a nursery with an anatomical study of the phloem tissue in their stems to examine how drought alters carbon transport and phloem transport capacity. For the six trees under drought, predawn leaf water potential ranged from -0.7 to -2.4 MPa, compared with an average of -0.2 MPa in five control trees with no water stress. We also observed a longer residence time of excess 13C in the foliage and the phloem sap in trees under drought compared with controls. Compared with controls, excess 13C in trunk respiration peaked later in trees under moderate drought conditions and showed no decline even after 4 days under more severe drought conditions. We estimated higher phloem sap viscosity in trees under drought. We also observed much smaller sieve-tube radii in all drought-stressed trees, which led to lower sieve-tube conductivity and lower phloem conductance in the tree stem. We concluded that prolonged drought affected phloem transport capacity through a change in anatomy and that the slowdown of phloem transport under drought likely resulted from a reduced driving force due to lower hydrostatic pressure between the source and sink organs.


Asunto(s)
Sequías , Fagus/metabolismo , Floema/metabolismo , Árboles/metabolismo , Transporte Biológico , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Fagus/anatomía & histología , Presión Hidrostática , Floema/anatomía & histología , Hojas de la Planta/metabolismo , Árboles/anatomía & histología
18.
Tree Physiol ; 28(8): 1245-54, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18519255

RESUMEN

Root respiration is an important component of the carbon balance of a forest ecosystem. We measured CO2 efflux of excised fine roots and intact coarse roots in 3-, 4- and 13-year-old Eucalyptus stands in the region of Pointe-Noire, Republic of the Congo. A transportable and adaptable closed chamber gas exchange system directly measured CO2 efflux of roots from 0.5 to 32 mm in diameter. Fluxes were corrected for measurement system leaks and normalized to a reference temperature of 30 degrees C. Mean fine root respiration rates at the reference temperature varied between 8.5 and 10.8 micromol CO2 kg(-1) s(-1) depending on the stand. Coarse root respiration was strongly negatively correlated to root diameter. We propose a model based on a radial gradient of respiratory activity within the root to simulate the exponential decrease in respiration with diameter. Although many sources of uncertainty in the measurements remain, as discussed in this paper, these results provide a basis for scaling up organ-level root respiration measurements to the tree and stand levels.


Asunto(s)
Dióxido de Carbono/metabolismo , Eucalyptus/metabolismo , Clonación de Organismos , Congo , Eucalyptus/anatomía & histología , Eucalyptus/genética , Nitrógeno/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Temperatura
20.
Tree Physiol ; 37(6): 790-798, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28369560

RESUMEN

Numerous studies have shown that internal nitrogen (N) translocation in temperate tree species is governed by photoperiod duration and temperature. For tropical tree species, the seasonality of rainfall is known to affect growth and foliage production, suggesting that efficient internal N recycling also occurs throughout the year. We tested this hypothesis by comparing the N budgets and N partitioning (non-structural vs structural N) in the different organs of 7-year-old Eucalyptus urophylla (S.T. Blake) × E. grandis (W. Hill ex Maiden) trees from a plantation in coastal Congo on poor sandy soil. The trees were sampled at the end of the dry season and late in the rainy season. Lower N concentrations and N investment in the non-structural fraction were observed in leaves during the dry season, which indicates resorption of non-structural N from senescing leaves. Stem wood, which contributes to about 60% of the total biomass of the trees, accumulated high amounts of non-structural N at the end of the dry season, most of which was remobilized during the following rainy season. These results support the hypothesis of efficient internal N recycling, which may be an important determinant for the growth potential of eucalypts on N-poor soils. Harvesting trees late in the rainy season when stem wood is depleted in non-structural N should be recommended to limit the export of nutrients off-site and to improve the sustainability of tropical eucalypt plantations.


Asunto(s)
Eucalyptus/fisiología , Nitrógeno/análisis , Hojas de la Planta/química , Estaciones del Año , Madera/química , Congo , Árboles/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA