Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ann Bot ; 109(5): 965-78, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22323427

RESUMEN

BACKGROUND AND AIMS: Populations established by long-distance colonization are expected to show low levels of genetic variation per population, but strong genetic differentiation among populations. Whether isolated populations indeed show this genetic signature of isolation depends on the amount and diversity of diaspores arriving by long-distance dispersal, and time since colonization. For ferns, however, reliable estimates of long-distance dispersal rates remain largely unknown, and previous studies on fern population genetics often sampled older or non-isolated populations. Young populations in recent, disjunct habitats form a useful study system to improve our understanding of the genetic impact of long-distance dispersal. METHODS: Microsatellite markers were used to analyse the amount and distribution of genetic diversity in young populations of four widespread calcicole ferns (Asplenium scolopendrium, diploid; Asplenium trichomanes subsp. quadrivalens, tetraploid; Polystichum setiferum, diploid; and Polystichum aculeatum, tetraploid), which are rare in The Netherlands but established multiple populations in a forest (the Kuinderbos) on recently reclaimed Dutch polder land following long-distance dispersal. Reference samples from populations throughout Europe were used to assess how much of the existing variation was already present in the Kuinderbos. KEY RESULTS: A large part of the Dutch and European genetic diversity in all four species was already found in the Kuinderbos. This diversity was strongly partitioned among populations. Most populations showed low genetic variation and high inbreeding coefficients, and were assigned to single, unique gene pools in cluster analyses. Evidence for interpopulational gene flow was low, except for the most abundant species. CONCLUSIONS: The results show that all four species, diploids as well as polyploids, were capable of frequent long-distance colonization via single-spore establishment. This indicates that even isolated habitats receive dense and diverse spore rains, including genotypes capable of self-fertilization. Limited gene flow may conserve the genetic signature of multiple long-distance colonization events for several decades.


Asunto(s)
Helechos/fisiología , Flujo Génico/genética , Variación Genética/genética , Genética de Población , Dispersión de Semillas/fisiología , Esporas/fisiología , Diploidia , Ecosistema , Helechos/genética , Genotipo , Geografía , Endogamia , Repeticiones de Microsatélite/genética , Países Bajos , Poliploidía , Dinámica Poblacional , Autofecundación , Esporas/genética
2.
Mol Phylogenet Evol ; 47(1): 302-18, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18343689

RESUMEN

The congenital fusion of carpels, or syncarpy, is considered a key innovation as it is found in more than 80% of angiosperms. Within the magnoliids however, syncarpy has rarely evolved. Two alternative evolutionary origins of syncarpy were suggested in order to explain the evolution of this feature: multiplication of a single carpel vs. fusion of a moderate number of carpels. The magnoliid family Annonaceae provides an ideal situation to test these hypotheses as two African genera, Isolona and Monodora, are syncarpous in an otherwise apocarpous family with multicarpellate and unicarpellate genera. In addition to syncarpy, the evolution of six other morphological characters was studied. Well-supported phylogenetic relationships of African Annonaceae and in particular those of Isolona and Monodora were reconstructed. Six plastid regions were sequenced and analyzed using maximum parsimony and Bayesian inference methods. The Bayesian posterior mapping approach to study character evolution was used as it accounts for both mapping and phylogenetic uncertainty, and also allows multiple state changes along the branches. Our phylogenetic analyses recovered a fully resolved clade comprising twelve genera endemic to Africa, including Isolona and Monodora, which was nested within the so-called long-branch clade. This is the largest and most species-rich clade of African genera identified to date within Annonaceae. The two syncarpous genera were inferred with maximum support to be sister to a clade characterized by genera with multicarpellate apocarpous gynoecia, supporting the hypothesis that syncarpy arose by fusion of a moderate number of carpels. This hypothesis was also favoured when studying the floral anatomy of both genera. Annonaceae provide the only case of a clear evolution of syncarpy within an otherwise apocarpous magnoliid family. The results presented here offer a better understanding of the evolution of syncarpy in Annonaceae and within angiosperms in general.


Asunto(s)
Annonaceae/genética , Filogenia , África , Annonaceae/clasificación , Teorema de Bayes , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Reacción en Cadena de la Polimerasa
3.
Philos Trans R Soc Lond B Biol Sci ; 359(1450): 1495-508, 2004 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-15519968

RESUMEN

Annonaceae are a pantropically distributed family found predominantly in rainforests, so they are megathermal taxa, whereas Rhamnaceae are a cosmopolitan family that tend to be found in xeric regions and may be classified as mesothermal. Phylogenetic analyses of these families are presented based on rbcL and trnL-F plastid DNA sequences. Likelihood ratio tests revealed rate heterogeneity in both phylogenetic trees and they were therefore made ultrametric using non-parametric rate smoothing and penalized likelihood. Divergence times were then estimated using fossil calibration points. The historical biogeography of these families that are species rich in different biomes is discussed and compared with other published reconstructions. Rhamnaceae and most lineages within Annonaceae are too young to have had their distribution patterns influenced by break-up of previously connected Gondwanan landmasses. Contrasts in the degree of geographical structure between these two families may be explained by differences in age and dispersal capability. In both groups, long-distance dispersal appears to have played a more significant role in establishing modern patterns than had previously been assumed. Both families also contain examples of recent diversification of species-rich lineages. An understanding of the processes responsible for shaping the distribution patterns of these families has contributed to our understanding of the historical assembly of the biomes that they occupy.


Asunto(s)
Annonaceae/genética , Evolución Molecular , Fósiles , Filogenia , Rhamnaceae/genética , Geografía , Funciones de Verosimilitud , Modelos Genéticos , Plastidios/genética , Ribulosa-Bifosfato Carboxilasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA