Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892216

RESUMEN

The escalating threat of multidrug-resistant pathogens necessitates innovative approaches to combat infectious diseases. In this study, we examined peptides R23FS*, V31KS*, and R44KS*, which were engineered to include an amyloidogenic fragment sourced from the S1 protein of S. aureus, along with one or two cell-penetrating peptide (CPP) components. We assessed the antimicrobial efficacy of these peptides in a liquid medium against various strains of both Gram-positive bacteria, including S. aureus (209P and 129B strains), MRSA (SA 180 and ATCC 43300 strains), and B. cereus (strain IP 5832), and Gram-negative bacteria such as P. aeruginosa (ATCC 28753 and 2943 strains) and E. coli (MG1655 and K12 strains). Peptides R23FS*, V31KS*, and R44KS* exhibited antimicrobial activity comparable to gentamicin and meropenem against all tested bacteria at concentrations ranging from 24 to 48 µM. The peptides showed a stronger antimicrobial effect against B. cereus. Notably, peptide R44KS* displayed high efficacy compared to peptides R23FS* and V31KS*, particularly evident at lower concentrations, resulting in significant inhibition of bacterial growth. Furthermore, modified peptides V31KS* and R44KS* demonstrated enhanced inhibitory effects on bacterial growth across different strains compared to their unmodified counterparts V31KS and R44KS. These results highlight the potential of integrating cell-penetrating peptides, amyloidogenic fragments, and amino acid residue modifications to advance the innovation in the field of antimicrobial peptides, thereby increasing their effectiveness against a broad spectrum of pathogens.


Asunto(s)
Péptidos Antimicrobianos , Péptidos de Penetración Celular , Pruebas de Sensibilidad Microbiana , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Antibacterianos/farmacología , Antibacterianos/química , Aminoácidos/química , Diseño de Fármacos , Proteínas Amiloidogénicas/química
2.
J Dairy Sci ; 106(3): 1638-1649, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36710191

RESUMEN

The gram-positive bacterium Listeria monocytogenes is an important foodborne pathogen contaminating dairy products. Closely related to L. monocytogenes saprophytic Listeria spp. are also frequent contaminators of food and, particularly, dairy products. To distinguish L. monocytogenes from nonpathogenic Listeria spp. and other bacteria, a dot-immunoassay was developed. The immunoassay is based on the polyclonal antibody to the secreted form of the surface virulence-associated L. monocytogenes-specific InlB protein. To increase InlB production, bacteria were grown on the brain-heart infusion agar supplemented with 0.2% activated charcoal (BHIC agar). Direct plating of artificially contaminated raw milk samples on the BHIC agar followed by the dot-immunoassay allowed a rapid identification of L. monocytogenes in concentrations as little as 10 cfu/mL. Using the developed approach, preliminary results were obtained within 14 h, and the final results were obtained after 26 h. The dot-immunoassay was tested on L. monocytogenes strains belonging to different clonal complexes and phylogenetic lineages, Listeria spp., and other bacterial species. Results showed the exceptional specificity of the developed dot-immunoassay for the rapid identification of L. monocytogenes.


Asunto(s)
Listeria monocytogenes , Listeria , Animales , Leche/microbiología , Agar , Filogenia , Inmunoensayo/veterinaria , Microbiología de Alimentos
3.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108418

RESUMEN

Listeria monocytogenes virulence factor InlB specifically interacts with the receptors c-Met and gC1q-R. Both receptors are present in non-professional and professional phagocytes, including macrophages. Phylogenetically defined InlB isoforms differently support invasion into non-professional phagocytes. This work deals with the effects of InlB isoforms on L. monocytogenes uptake and intracellular proliferation in human macrophages. Three isoforms of the receptor binding domain (idInlB) were derived from phylogenetically distinct L. monocytogenes strains belonging to the highly virulent CC1 (idInlBCC1), medium-virulence CC7 (idInlBCC7), and low-virulence CC9 (idInlBCC9) clonal complexes. The constant dissociation increased in the order idInlBCC1 << idInlBCC7 < idInlBCC9 for interactions with c-Met, and idInlBCC1 ≈ idInlBCC7 < idInlBCC9 for interactions with gC1q-R. The comparison of uptake and intracellular proliferation of isogenic recombinant strains which expressed full-length InlBs revealed that the strain expressing idInlBCC1 proliferated in macrophages twice as efficiently as other strains. Macrophage pretreatment with idInlBCC1 followed by recombinant L. monocytogenes infection disturbed macrophage functions decreasing pathogen uptake and improving its intracellular multiplication. Similar pretreatment with idInlBCC7 decreased bacterial uptake but also impaired intracellular multiplication. The obtained results demonstrated that InlB impaired macrophage functions in an idInlB isoform-dependent manner. These data suggest a novel InlB function in L. monocytogenes virulence.


Asunto(s)
Listeria monocytogenes , Listeria , Listeriosis , Humanos , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Isoformas de Proteínas/metabolismo , Factores de Virulencia/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo
4.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38069046

RESUMEN

Combining antimicrobial peptides (AMPs) with cell-penetrating peptides (CPPs) has shown promise in boosting antimicrobial potency, especially against Gram-negative bacteria. We examined the CPP-AMP interaction with distinct bacterial types based on cell wall differences. Our investigation focused on AMPs incorporating penetratin CPP and dihybrid peptides containing both cell-penetrating TAT protein fragments from the human immunodeficiency virus and Antennapedia peptide (Antp). Assessment of the peptides TAT-AMP, AMP-Antp, and TAT-AMP-Antp revealed their potential against Gram-positive strains (Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), and Bacillus cereus). Peptides TAT-AMP and AMP-Antp using an amyloidogenic AMP from S1 ribosomal protein Thermus thermophilus, at concentrations ranging from 3 to 12 µM, exhibited enhanced antimicrobial activity against B. cereus. TAT-AMP and TAT-AMP-Antp, using an amyloidogenic AMP from the S1 ribosomal protein Pseudomonas aeruginosa, at a concentration of 12 µM, demonstrated potent antimicrobial activity against S. aureus and MRSA. Notably, the TAT-AMP, at a concentration of 12 µM, effectively inhibited Escherichia coli (E. coli) growth and displayed antimicrobial effects similar to gentamicin after 15 h of incubation. Peptide characteristics determined antimicrobial activity against diverse strains. The study highlights the intricate relationship between peptide properties and antimicrobial potential. Mechanisms of AMP action are closely tied to bacterial cell wall attributes. Peptides with the TAT fragment exhibited enhanced antimicrobial activity against S. aureus, MRSA, and P. aeruginosa. Peptides containing only the Antp fragment displayed lower activity. None of the investigated peptides demonstrated cytotoxic or cytostatic effects on either BT-474 cells or human skin fibroblasts. In conclusion, CPP-AMPs offer promise against various bacterial strains, offering insights for targeted antimicrobial development.


Asunto(s)
Antiinfecciosos , Péptidos de Penetración Celular , Staphylococcus aureus Resistente a Meticilina , Humanos , Péptidos de Penetración Celular/farmacología , Péptidos de Penetración Celular/química , Staphylococcus aureus , Escherichia coli , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Proteínas Ribosómicas/farmacología , Pruebas de Sensibilidad Microbiana
5.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35008951

RESUMEN

The need to develop new antimicrobial peptides is due to the high resistance of pathogenic bacteria to traditional antibiotics now and in the future. The creation of synthetic peptide constructs is a common and successful approach to the development of new antimicrobial peptides. In this work, we use a simple, flexible, and scalable technique to create hybrid antimicrobial peptides containing amyloidogenic regions of the ribosomal S1 protein from Staphylococcus aureus. While the cell-penetrating peptide allows the peptide to enter the bacterial cell, the amyloidogenic site provides an antimicrobial effect by coaggregating with functional bacterial proteins. We have demonstrated the antimicrobial effects of the R23F, R23DI, and R23EI hybrid peptides against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa, Escherichia coli, and Bacillus cereus. R23F, R23DI, and R23EI can be used as antimicrobial peptides against Gram-positive and Gram-negative bacteria resistant to traditional antibiotics.


Asunto(s)
Péptidos Antimicrobianos/farmacología , Proteínas Bacterianas/química , Proteínas Ribosómicas/química , Staphylococcus aureus , Secuencia de Aminoácidos , Proteínas Amiloidogénicas/química , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Antimicrobianos/síntesis química , Péptidos Antimicrobianos/química , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/síntesis química , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Relación Dosis-Respuesta a Droga , Fibroblastos , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Staphylococcus aureus/efectos de los fármacos
6.
Int J Mol Sci ; 23(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35628272

RESUMEN

Antibiotic-resistant bacteria are recognized as one of the leading causes of death in the world. We proposed and successfully tested peptides with a new mechanism of antimicrobial action "protein silencing" based on directed co-aggregation. The amyloidogenic antimicrobial peptide (AAMP) interacts with the target protein of model or pathogenic bacteria and forms aggregates, thereby knocking out the protein from its working condition. In this review, we consider antimicrobial effects of the designed peptides on two model organisms, E. coli and T. thermophilus, and two pathogenic organisms, P. aeruginosa and S. aureus. We compare the amino acid composition of proteomes and especially S1 ribosomal proteins. Since this protein is inherent only in bacterial cells, it is a good target for studying the process of co-aggregation. This review presents a bioinformatics analysis of these proteins. We sum up all the peptides predicted as amyloidogenic by several programs and synthesized by us. For the four organisms we studied, we show how amyloidogenicity correlates with antibacterial properties. Let us especially dwell on peptides that have demonstrated themselves as AMPs for two pathogenic organisms that cause dangerous hospital infections, and in which the minimal inhibitory concentration (MIC) turned out to be comparable to the MIC of gentamicin sulfate. All this makes our study encouraging for the further development of AAMP. The hybrid peptides may thus provide a starting point for the antibacterial application of amyloidogenic peptides.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Péptidos Antimicrobianos , Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias , Escherichia coli , Pseudomonas aeruginosa , Staphylococcus aureus
7.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35163759

RESUMEN

Changes in bacterial physiology caused by the combined action of the magnetic force and microgravity were studied in Escherichia coli grown using a specially developed device aboard the International Space Station. The morphology and metabolism of E. coli grown under spaceflight (SF) or combined spaceflight and magnetic force (SF + MF) conditions were compared with ground cultivated bacteria grown under standard (control) or magnetic force (MF) conditions. SF, SF + MF, and MF conditions provided the up-regulation of Ag43 auto-transporter and cell auto-aggregation. The magnetic force caused visible clustering of non-sedimenting bacteria that formed matrix-containing aggregates under SF + MF and MF conditions. Cell auto-aggregation was accompanied by up-regulation of glyoxylate shunt enzymes and Vitamin B12 transporter BtuB. Under SF and SF + MF but not MF conditions nutrition and oxygen limitations were manifested by the down-regulation of glycolysis and TCA enzymes and the up-regulation of methylglyoxal bypass. Bacteria grown under combined SF + MF conditions demonstrated superior up-regulation of enzymes of the methylglyoxal bypass and down-regulation of glycolysis and TCA enzymes compared to SF conditions, suggesting that the magnetic force strengthened the effects of microgravity on the bacterial metabolism. This strengthening appeared to be due to magnetic force-dependent bacterial clustering within a small volume that reinforced the effects of the microgravity-driven absence of convectional flows.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Técnicas Bacteriológicas/instrumentación , Proteínas de Escherichia coli/genética , Escherichia coli/fisiología , Proteínas de Transporte de Membrana/genética , Técnicas Bacteriológicas/métodos , Escherichia coli/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Glucólisis , Glioxilatos/metabolismo , Fenómenos Magnéticos , Oxígeno/metabolismo , Piruvaldehído/metabolismo , Vuelo Espacial , Ingravidez
8.
Drug Dev Res ; 82(1): 123-132, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32830369

RESUMEN

Hepatocyte growth factor (HGF) is central to liver regeneration. The Internalin B (InlB) protein is a virulence factor produced by the pathogenic bacterium Listeria monocytogenes. InlB is known to mimic HGF activity by interacting with the HGF receptor (HGFR) and activating HGFR-controlled signaling pathways. We expressed and purified the HGFR-binding InlB domain, InlB321/15, cloned from the fully virulent clinical L. monocytogenes strain. HGFR and Erk1/2 phosphorylation was determined using Western blotting. The capacity of InlB321/15 to bind HGFR was measured using microscale thermophoresis. Liver regeneration was studied in a model of 70% partial hepatectomy (70%PHx) in male Wistar rats. The nuclear grade parameters were quantified using manual (percentage of binuclear hepatocytes), automated (nuclear diameters), or combined (Ki67 proliferation index) scoring methods. Purified InlB321/15 stimulated HGFR and Erk1/2 phosphorylation and accelerated the proliferation of HepG2 cells. InlB321/15 bound HGFR with Kd = 7.4 ± 1.3 nM. InlB321/15 injected intravenously on the second, fourth, and sixth days after surgery recovered the liver mass and improved the nuclear grade parameters. Seven days post 70% PHx, the liver weight indexes were 2.9 and 2.0%, the hepatocyte proliferation indexes were 19.8 and 0.6%, and the percentages of binucleated hepatocytes were 6.7 and 4.0%, in the InlB321/15-treated and control animals, respectively. Obtained data demonstrated that InlB321/15 improved hepatocyte proliferation and stimulated liver regeneration in animals with 70% hepatectomy.


Asunto(s)
Proteínas Bacterianas/farmacología , Regeneración Hepática/efectos de los fármacos , Proteínas Proto-Oncogénicas c-met/agonistas , Animales , Proteínas Bacterianas/genética , Proliferación Celular/efectos de los fármacos , Células Hep G2 , Hepatectomía , Humanos , Listeria monocytogenes , Masculino , Proteínas Proto-Oncogénicas c-met/genética , Ratas Wistar , Proteínas Recombinantes/farmacología
9.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34575940

RESUMEN

The development and testing of new antimicrobial peptides (AMPs) represent an important milestone toward the development of new antimicrobial drugs that can inhibit the growth of pathogens and multidrug-resistant microorganisms such as Pseudomonas aeruginosa, Gram-negative bacteria. Most AMPs achieve these goals through mechanisms that disrupt the normal permeability of the cell membrane, which ultimately leads to the death of the pathogenic cell. Here, we developed a unique combination of a membrane penetrating peptide and peptides prone to amyloidogenesis to create hybrid peptide: "cell penetrating peptide + linker + amyloidogenic peptide". We evaluated the antimicrobial effects of two peptides that were developed from sequences with different propensities for amyloid formation. Among the two hybrid peptides, one was found with antibacterial activity comparable to antibiotic gentamicin sulfate. Our peptides showed no toxicity to eukaryotic cells. In addition, we evaluated the effect on the antimicrobial properties of amino acid substitutions in the non-amyloidogenic region of peptides. We compared the results with data on the predicted secondary structure, hydrophobicity, and antimicrobial properties of the original and modified peptides. In conclusion, our study demonstrates the promise of hybrid peptides based on amyloidogenic regions of the ribosomal S1 protein for the development of new antimicrobial drugs against P. aeruginosa.


Asunto(s)
Proteínas Amiloidogénicas/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Pseudomonas aeruginosa/efectos de los fármacos , Proteínas Ribosómicas/genética , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/farmacología , Proteínas Amiloidogénicas/ultraestructura , Antibacterianos/efectos adversos , Humanos , Pruebas de Sensibilidad Microbiana , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacología , Estructura Secundaria de Proteína , Pseudomonas aeruginosa/patogenicidad , Proteínas Ribosómicas/farmacología , Proteínas Ribosómicas/ultraestructura
10.
BMC Ecol ; 19(1): 47, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31757213

RESUMEN

BACKGROUND: Some pathogenic bacteria have been developing as a part of terrestrial and aquatic microbial ecosystems. Bacteria are consumed by bacteriovorous protists which are readily consumed by larger organisms. Being natural predators, protozoa are also an instrument for selection of virulence traits in bacteria. Moreover, protozoa serve as a "Trojan horse" that deliver pathogens to the human body. Here, we suggested that carnivorous amoebas feeding on smaller bacteriovorous protists might serve as "Troy" themselves when pathogens are delivered to them with their preys. A dual role might be suggested for protozoa in the development of traits required for bacterial passage along the food chain. RESULTS: A model food chain was developed. Pathogenic bacteria L. monocytogenes or related saprophytic bacteria L. innocua constituted the base of the food chain, bacteriovorous ciliate Tetrahymena pyriformis was an intermediate consumer, and carnivorous amoeba Amoeba proteus was a consumer of the highest order. The population of A. proteus demonstrated variations in behaviour depending on whether saprophytic or virulent Listeria was used to feed the intermediate consumer, T. pyriformis. Feeding of A. proteus with T. pyriformis that grazed on saprophytic bacteria caused prevalence of pseudopodia-possessing hungry amoebas. Statistically significant prevalence of amoebas with spherical morphology typical for fed amoebas was observed when pathogenic L. monocytogenes were included in the food chain. Moreover, consumption of tetrahymenas fed with saprophytic L. innocua improved growth of A. proteus population while L. monocytogenes-filled tetrahymenas provided negative effect. Both pathogenic and saprophytic bacteria were delivered to A. proteus alive but only L. monocytogenes multiplied within amoebas. Observed differences in A. proteus population behaviour suggested that virulent L. monocytogenes might slow down restoration of A. proteus ability to hunt again and thus restrict the size of A. proteus population. Comparison of isogenic bacterial pairs that did or did not produce the haemolysin listeriolysin O (LLO) suggested a role for LLO in passing L. monocytogenes along the food chain. CONCLUSIONS: Our results support the idea of protozoa as a means of pathogen delivery to consumers of a higher order and demonstrated a dual role of protozoa as both a "Trojan horse" and "Troy."


Asunto(s)
Amoeba , Listeria , Tetrahymena , Ecosistema , Cadena Alimentaria , Virulencia
11.
Emerg Infect Dis ; 22(3): 503-6, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26889961

RESUMEN

We used multivirulence locus sequence typing to analyze 68 Yersinia pseudotuberculosis isolates from patients in Russia during 1973-2014, including 41 isolates from patients with Far East scarlet-like fever. Four genotypes were found responsible, with 1 being especially prevalent. Evolutionary analysis suggests that epidemiologic advantages could cause this genotype's dominance.


Asunto(s)
Fiebre/epidemiología , Fiebre/microbiología , Genotipo , Infecciones por Yersinia pseudotuberculosis/epidemiología , Infecciones por Yersinia pseudotuberculosis/microbiología , Yersinia pseudotuberculosis/clasificación , Yersinia pseudotuberculosis/genética , Animales , Proteínas Bacterianas/genética , Evolución Molecular , Genes Esenciales , Humanos , Tipificación de Secuencias Multilocus , Filogenia , Polimorfismo Genético , Federación de Rusia/epidemiología , Serogrupo , Factores de Virulencia/genética , Yersinia pseudotuberculosis/aislamiento & purificación
12.
Cells ; 12(2)2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36672273

RESUMEN

Magnetic force and gravity are two fundamental forces affecting all living organisms, including bacteria. On Earth, experimentally created magnetic force can be used to counterbalance gravity and place living organisms in conditions of magnetic levitation. Under conditions of microgravity, magnetic force becomes the only force that moves bacteria, providing an acceleration towards areas of the lowest magnetic field and locking cells in this area. In this review, we consider basic principles and experimental systems used to create a magnetic force strong enough to balance gravity. Further, we describe how magnetic levitation is applied in on-Earth microbiological studies. Next, we consider bacterial behavior under combined conditions of microgravity and magnetic force onboard a spacecraft. At last, we discuss restrictions on applications of magnetic force in microbiological studies and the impact of these restrictions on biotechnological applications under space and on-Earth conditions.


Asunto(s)
Magnetismo , Ingravidez , Fenómenos Magnéticos
13.
Sci Rep ; 13(1): 4315, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922567

RESUMEN

Aeromonas spp. are gram-negative facultatively anaerobic bacilli recovered mainly from aquatic environments. Aeromonas spp. were reported to be associated with infections primarily in aquatic and to a lesser extent in terrestrial animals as well as in humans. Up-to-date little is known about aeromonads associated with wild animals, especially with rodents. This study reported the first isolation and characterization of two Aeromonas spp. from internal organs of apparently healthy wild rodents Apodemus uralensis and Apodemus flavicollis captured in the wild environment in the European part of Russia. Isolates were identified as A. hydrophila M-30 and A. encheleia M-2 using the multilocus sequence analysis (MLSA) approach. The isolation of the A. encheleia from rodents is the first described case. Both strains demonstrated beta-hemolytic activity towards human erythrocytes. Antimicrobial susceptibility testing showed that both Aeromonas strains were resistant and intermediate to carbapenems and piperacillin-tazobactam, which was caused by the expression of the genus-specific CphA carbapenemases. A. hydrophila M-30 also demonstrated trimethoprim resistant phenotype. This is usually caused by the carriage of the dfrA or dfrB genes in aeromonads which are frequently associated with integron class I. The latter however was absent in both isolates. Our results expand our understanding of possible aeromonad reservoirs and demonstrate the likelihood of the formation of natural foci of Aeromonas infection and a new link in the chain of the spread of antimicrobial resistance as well.


Asunto(s)
Aeromonas , Ratones , Humanos , Animales , Aeromonas/genética , Antibacterianos/farmacología , Carbapenémicos , Fenotipo , Murinae , Pruebas de Sensibilidad Microbiana
14.
PLoS One ; 18(8): e0290842, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37651463

RESUMEN

Listeria monocytogenes is motile at 22°C and non-motile at 37°C. In contrast, expression of L. monocytogenes virulence factors is low at 22°C and up-regulated at 37°C. Here, we studied a character of L. monocytogenes near surface swimming (NSS) motility and its effects on adhesion patterns and invasion into epithelial cells. L. monocytogenes and its saprophytic counterpart L. innocua both grown at 22°C showed similar NSS characteristics including individual velocities, trajectory lengths, residence times, and an asymmetric distribution of velocity directions. Similar NSS patterns correlated with similar adhesion patterns. Motile bacteria, including both pathogenic and saprophytic species, showed a preference for adhering to the periphery of epithelial HEp-2 cells. In contrast, non-motile bacteria were evenly distributed across the cell surface, including areas over the nucleus. However, the uneven distribution of motile bacteria did not enhance the invasion into HEp-2 cells unless virulence factor production was up-regulated by the transient shift of the culture to 37°C. Motile L. monocytogenes grown overnight at 22°C and then shifted to 37°C for 2 h expressed invasion factors at the same level and invaded human cells up to five times more efficiently comparatively with non-motile bacteria grown overnight at 37°C. Taken together, obtained results demonstrated that (i) NSS motility and correspondent peripheral location over the cell surface did not depend on L. monocytogenes virulence traits; (ii) motility improved L. monocytogenes invasion into human HEp-2 cells within a few hours after the transition from the ambient temperature to the human body temperature.


Asunto(s)
Listeria monocytogenes , Humanos , Fenómenos Físicos , Membrana Celular , Núcleo Celular , Células Epiteliales , Adherencias Tisulares , Factores de Virulencia
15.
Antibiotics (Basel) ; 11(5)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35625292

RESUMEN

Elizabethkingia anophelis is an emerging multidrug-resistant pathogen that causes severe nosocomial and community-acquired infections worldwide. We report the first case of E. anophelis isolation in Russia and the first isolation from raw cow's milk. The ML-44 demonstrated resistance to 28 antimicrobials of 33 tested in the disk-diffusion test. Whole genome-based phylogeny showed ML-44 strain clustered together with the F3201 strain isolated from a human patient in Kuwait in 1982. Both strains were a part of the "endophytica" clade. Another clade was formed by subsp. anophelis strains. Each of the E. anophelis compared genomes carried 18 to 21 antibiotic resistance determinants. The ML-44 chromosome harbored nine efflux system genes and three beta-lactamase genes, along with six other antimicrobial resistance genes. In total, 72 virulence genes were revealed. The set of virulence factors was quite similar between different E. anophelis strains and included LPS and capsule encoded genes, type IV pili, oxidative stress response genes, and genes encoding TIVSS and TVISS effectors. The particular interest caused the mip and zmp1 gene homologs, which can be essential for intracellular survival. In sum, our findings suggest that raw milk might be a source of E. anophelis harboring a set of virulence factors and a broad resistance to generally used antimicrobials.

16.
Foods ; 10(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34829070

RESUMEN

Totally, 45 L. monocytogenes strains isolated from meat, poultry, dairy, and fish products in the Central European part of Russia in 2001-2005 and 2019-2020 were typed using a combined MLST and internalin profile (IP) scheme. Strains belonged to 14 clonal complexes (CCs) of the phylogenetic lineages I and II. Almost half of the strains (20 of 45) belonged to six CCs previously recognized as epidemic clones (ECs). ECI and ECV strains were isolated during both studied periods, and ECII, ECIV, ECVI, and ECVII strains were isolated in 2001-2005, but not in 2019-2020. ECI, ECIV, ECV, and ECVII strains were isolated from products of animal origin. ECII and ECVI were isolated from fish. Testing of invasion efficiencies of 10 strains isolated in different years and from different sources and belonging to distinct CCs revealed a statistically significant difference between phylogenetic lineage I and II strains but not between ECs and non-EC CCs or strains differing by year and source of isolation. Strains isolated in 2001-2005 were characterized by higher phylogenetic diversity and greater presentation of ECs and CCs non-typical for natural and anthropogenic environments of the European part of Russia comparatively to isolates obtained in 2019-2020.Closing of the Russian market in 2019-2020 for imported food might be responsible for these differences.

17.
Antibiotics (Basel) ; 10(10)2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34680788

RESUMEN

Susceptibility of 117 L. monocytogenes strains isolated during three time periods (1950-1980; 2000-2005, and 2018-2021) to 23 antibiotics was tested by the disk diffusion method. All strains were sensitive to aminoglycosides (gentamicin, kanamycin, neomycin, streptomycin), glycopeptides (vancomycin and teicoplanin), clarithromycin, levofloxacin, amoxicillin/clavulanic acid, and trimethoprim/sulfamethoxazole. Resistance to clindamycin was observed in 35.5% of strains. Resistance to carbapenems, imipenem and meropenem was found in 4% and 5% of strains, respectively. Resistance to erythromycin, penicillin G, trimethoprim, and ciprofloxacin was found in 4%, 3%, 3%, and 2.5% of strains, respectively. Resistance to tylosin, ampicillin, enrofloxacin, linezolid, chloramphenicol, and tetracycline was found in less than 2%. Three strains with multiple antibiotic resistance and 12 strains with resistance to two antibiotics were revealed. Comparison of strains isolated in different time periods showed that the percentage of resistant strains was the lowest among strains isolated before 1980, and no strains with multiple antibiotic resistance were found among them. Statistical analysis demonstrated that the temporal evolution of resistance in L. monocytogenes has an antibiotic-specific character. While resistance to some antibiotics such as ampicillin and penicillin G has gradually decreased in the population, resistance to other antibiotics acquired by particular strains in recent years has not been accompanied by changes in resistance of other strains.

18.
Antibiotics (Basel) ; 11(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35052878

RESUMEN

Food products may be a source of Salmonella, one of the main causal agents of food poisoning, especially after the emergence of strains resistant to antimicrobial preparations. The present work dealt with investigation of the occurrence of resistance to antimicrobial preparations among S. enterica strains isolated from food. The isolates belonged to 11 serovars, among which Infantis (28%), Enteritidis (19%), and Typhimurium (13.4%) predominated. The isolates were most commonly resistant to trimethoprim/sulfamethoxazole (n = 19, 59.38%), cefazolin (n = 15, 46.86%), tetracycline (n = 13, 40.63%), and amikacin (n = 9, 28.13%). Most of the strains (68.75%) exhibited multiple resistance to commonly used antibiotics. High-throughput sequencing was used to analyse three multidrug-resistant strains (resistant to six or more antibiotics). Two of them (SZL 30 and SZL 31) belonged to S. Infantis, while one strain belonged to S. Typhimurium (SZL 38). Analysis of the genomes of the sequenced strains revealed the genes responsible for antibiotic resistance. In the genomes of strains SZL 30 and SZL 31 the genes of antibiotic resistance were shown to be localized mostly in integrons within plasmids, while most of the antibiotic resistance genes of strain SZL 38 were localized in a chromosomal island (17,949 nt). Genomes of the Salmonella strains SZL 30, SZL 31, and SZL 38 were shown to contain full-size pathogenicity islands: SPI-1, SPI-2, SPI-4, SPI-5, SPI-9, SPI-11, SPI-13, SPI-14, and CS54. Moreover, the genome of strain SZL 38 was also found to contain the full-size pathogenicity islands SPI-3, SPI-6, SPI-12, and SPI-16. The emergence of multidrug-resistant strains of various Salmonella serovars indicates that further research on the transmission pathways for these genetic determinants and monitoring of the distribution of these microorganisms are necessary.

19.
BMC Microbiol ; 10: 26, 2010 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-20109168

RESUMEN

BACKGROUND: The gram-positive pathogenic bacterium Listeria monocytogenes is widely spread in the nature. L. monocytogenes was reported to be isolated from soil, water, sewage and sludge. Listeriolysin O (LLO) is a L. monocytogenes major virulence factor. In the course of infection in mammals, LLO is required for intracellular survival and apoptosis induction in lymphocytes. In this study, we explored the potential of LLO to promote interactions between L. monocytogenes and the ubiquitous inhabitant of natural ecosystems bacteriovorous free-living ciliate Tetrahymena pyriformis. RESULTS: Wild type L. monocytogenes reduced T. pyriformis trophozoite counts and stimulated encystment. The effects were observed starting from 48 h of co-incubation. On the day 14, trophozoites were eliminated from the co-culture while about 5 x 104 cells/ml remained in the axenic T. pyriformis culture. The deficient in the LLO-encoding hly gene L. monocytogenes strain failed to cause mortality among protozoa and to trigger protozoan encystment. Replenishment of the hly gene in the mutant strain restored toxicity towards protozoa and induction of protozoan encystment. The saprophytic non-haemolytic species L. innocua transformed with the LLO-expressing plasmid caused extensive mortality and encystment in ciliates. During the first week of co-incubation, LLO-producing L. monocytogenes demonstrated higher growth rates in association with T. pyriformis than the LLO-deficient isogenic strain. At latter stages of co-incubation bacterial counts were similar for both strains. T. pyriformis cysts infected with wild type L. monocytogenes caused listerial infection in guinea pigs upon ocular and oral inoculation. The infection was proved by bacterial plating from the internal organs. CONCLUSIONS: The L. monocytogenes virulence factor LLO promotes bacterial survival and growth in the presence of bacteriovorous ciliate T. pyriformis. LLO is responsible for L. monocytogenes toxicity for protozoa and induction of protozoan encystment. L. monocytogenes entrapped in cysts remained viable and virulent. In whole, LLO activity seems to support bacterial survival in the natural habitat outside of a host.


Asunto(s)
Toxinas Bacterianas/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Listeria monocytogenes/crecimiento & desarrollo , Tetrahymena pyriformis/crecimiento & desarrollo , Tetrahymena pyriformis/microbiología , Animales , Infecciones por Cilióforos/microbiología , Técnicas de Cocultivo , Oftalmopatías/microbiología , Oftalmopatías/parasitología , Cobayas , Listeria monocytogenes/patogenicidad , Listeriosis/microbiología , Listeriosis/parasitología
20.
J Med Microbiol ; 68(12): 1747-1758, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31671056

RESUMEN

Introduction. The Mollicutes class unites cell wall lacking bacteria many of which are membrane parasites and opportunistic bacteria.Aim. This study describes a novel morphological form found in the five species belonging to the bacterial class Mollicutes, and referred to as microcolonies (MCs).Methodology. MCs were obtained as described below and characterized with bacteriological and immunological methods, and microscopy.Results. In contrast to typical colonies (TCs), MCs are characterized by tiny propeller-shaped colonies formed by rod-like cells tightly packed in parallel rows. These colonies were observed within routinely cultivated cultures of type strains 7-12 days post-plating. Rod-like cells were visualized using a scanning electron microscope within TCs with a 'fried-egg-like' appearance. MCs were not observed to revert to TCs. MCs were resistant to antibiotics and other treatments effective against TCs. Pure MC cultures were generated in vitro by treatment of Mycoplasma cultures with hyperimmune serum, antibiotics or argon non-thermal plasma. MCs of Mycoplasma hominis strain H-34 were characterized in detail to confirm that they belonged to that species. MCs tested positive via PCR with M. hominis-specific primers, direct fluorescence and epifluorescence tests, and Western blotting with the camel-derived nanobody aMh-FcG2a, which is specific to the MH3620 transporter protein. Meanwhile, MCs behaved differently in standard bacteriological tests. Pure MC cultures were also isolated directly from clinical samples of the serum, synovial liquid and urine of patients within flammatory urogenital tract diseases, asthma or arthritis. In total, 79 independent MC cultures were isolated from clinical samples including M. hominis (n=70), Mycoplasma pneumoniae (n=2), Mycoplasma fermentans (n=2) and Mycoplasma spp. (n=5).Conclusion. MCs play an unknown role in infection pathology and display prominent antibiotic resistance, making them a challenge for the future studies on Mollicutes.


Asunto(s)
Mycoplasma/citología , Tenericutes/aislamiento & purificación , Farmacorresistencia Bacteriana , Humanos , Tenericutes/citología , Tenericutes/efectos de los fármacos , Tenericutes/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA