Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 36(1): e22107, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34939700

RESUMEN

Mounting evidence has linked the metabolic disease to neurovascular disorders and cognitive decline. Using a murine model of a high-fat high-sugar diet mimicking obesity-induced type 2 diabetes mellitus (T2DM) in humans, we show that pro-inflammatory mediators and altered immune responses damage the blood-brain barrier (BBB) structure, triggering a proinflammatory metabolic phenotype. We find that disruption to tight junctions and basal lamina due to loss of control in the production of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) causes BBB impairment. Together the disruption to the structural and functional integrity of the BBB results in enhanced transmigration of leukocytes across the BBB that could contribute to an initiation of a neuroinflammatory response through activation of microglia. Using a humanized in vitro model of the BBB and T2DM patient post-mortem brains, we show the translatable applicability of our results. We find a leaky BBB phenotype in T2DM patients can be attributed to a loss of junctional proteins through changes in inflammatory mediators and MMP/TIMP levels, resulting in increased leukocyte extravasation into the brain parenchyma. We further investigated therapeutic avenues to reduce and restore the BBB damage caused by HFHS-feeding. Pharmacological treatment with recombinant annexin A1 (hrANXA1) or reversion from a high-fat high-sugar diet to a control chow diet (dietary intervention), attenuated T2DM development, reduced inflammation, and restored BBB integrity in the animals. Given the rising incidence of diabetes worldwide, understanding metabolic-disease-associated brain microvessel damage is vital and the proposed therapeutic avenues could help alleviate the burden of these diseases.


Asunto(s)
Barrera Hematoencefálica/inmunología , Colagenasas/inmunología , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Tipo 2/inmunología , Inhibidores Tisulares de Metaloproteinasas/inmunología , Animales , Anexina A1/farmacología , Barrera Hematoencefálica/patología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/patología , Humanos , Masculino , Ratones , Proteínas Recombinantes/farmacología
2.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36768791

RESUMEN

Dermatomyositis (DM) and immune-mediated necrotizing myopathy (IMNM) are two rare diseases belonging to the group of idiopathic inflammatory myopathies (IIM). Muscle involvement in DM is characterized by perifascicular atrophy and poor myofiber necrosis, while IMNM is characterized by myofiber necrosis with scarce inflammatory infiltrates. Muscle biopsies and laboratory tests are helpful in diagnosis, but currently, few biomarkers of disease activity and progression are available. In this context, we conducted a cohort study of forty-one DM and IMNM patients, aged 40-70 years. In comparison with control subjects, in the muscle biopsies of these patients, there was a lower expression of FNDC5, the precursor of irisin, a myokine playing a key role in musculoskeletal metabolism. Expectedly, the muscle cross-sectional areas of these patients were reduced, while, surprisingly, serum irisin levels were higher than in CTRL, as were mRNA levels of ADAM10, a metalloproteinase recently shown to be the cleavage agent for FNDC5. We hypothesize that elevated expression of ADAM10 in the skeletal muscle of DM and IMNM patients might be responsible for the discrepancy between irisin levels and FNDC5 expression. Future studies will be needed to understand the mechanisms underlying exacerbated FNDC5 cleavage and muscle irisin resistance in these inflammatory myopathies.


Asunto(s)
Enfermedades Autoinmunes , Miositis , Humanos , Fibronectinas/metabolismo , Estudios de Cohortes , Músculo Esquelético/metabolismo , Miositis/metabolismo , Factores de Transcripción/metabolismo , Enfermedades Autoinmunes/metabolismo , Necrosis/metabolismo , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo
3.
Rheumatology (Oxford) ; 61(8): 3448-3460, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34864921

RESUMEN

OBJECTIVES: To study the phenotype of macrophage infiltrates and their role in angiogenesis in different idiopathic inflammatory myopathies (IIMs). METHODS: The density and distribution of the subpopulations of macrophages subsets (M1, inducible nitric oxide+, CD11c+; M2, arginase-1+), endomysial capillaries (CD31+, FLK1+), degenerating (C5b-9+) and regenerating (NCAM+) myofibres were investigated by immunohistochemistry in human muscle samples of diagnostic biopsies from a large cohort of untreated patients (n: 81) suffering from anti-3-hydroxy-3-methylglutaryl coenzyme A reductase (anti-HMGCR)+ immune mediated necrotizing myopathy (IMNM), anti-signal recognition particle (anti-SRP)+ IMNM, seronegative IMNM, DM, PM, PM with mitochondrial pathology, sporadic IBM, scleromyositis, and anti-synthetase syndrome. The samples were compared with mitochondrial myopathy and control muscle samples. RESULTS: Compared with the other IIMs and controls, endomysial capillary density (CD) was higher in anti-HMGCR+ IMNM, where M1 and M2 macrophages, detected by confocal microscopy, infiltrated perivascular endomysium and expressed angiogenic molecules such as VEGF-A and CXCL12. These angiogenic macrophages were preferentially associated with CD31+ FLK1+ microvessels in anti-HMGCR+ IMNM. The VEGF-A+ M2 macrophage density was significantly correlated with CD (rS: 0.98; P: 0.0004). Western blot analyses revealed increased expression levels of VEGF-A, FLK1, HIF-1α and CXCL12 in anti-HMGCR+ IMNM. CD and expression levels of these angiogenic molecules were not increased in anti-SRP+ and seronegative IMNM, offering additional, useful information for differential diagnosis among these IIM subtypes. CONCLUSION: Our findings suggest that in IIMs, infiltrating macrophages and microvascular cells interactions play a pivotal role in coordinating myogenesis and angiogenesis. This reciprocal crosstalk seems to distinguish anti-HMGCR associated IMNM.


Asunto(s)
Enfermedades Autoinmunes , Miositis , Anticuerpos , Autoanticuerpos , Quimiocina CXCL12 , Humanos , Hidroximetilglutaril-CoA Reductasas , Macrófagos/patología , Músculo Esquelético/patología , Necrosis , Partícula de Reconocimiento de Señal , Factor A de Crecimiento Endotelial Vascular
4.
Glia ; 69(5): 1204-1215, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33381863

RESUMEN

Transplanted mesenchymal stromal/stem cells (MSC) ameliorate the clinical course of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), reducing inflammation and demyelination. These effects are mediated by instructive cross-talk between MSC and immune and neural cells. Astroglial reaction to injury is a prominent feature of both EAE and MS. Astrocytes constitute a relevant target to control disease onset and progression and, based on their potential to acquire stem cell properties in situ, to foster recovery in the post-acute phase of pathology. We have assessed how MSC impact astrocytes in vitro and ex vivo in EAE. Expression of astroglial factors implicated in EAE pathogenesis was quantified by real-time PCR in astrocytes co-cultured with MSC or isolated from EAE cerebral cortex; astrocyte morphology and expression of activation markers were analyzed by confocal microscopy. The acquisition of neural stem cell properties by astrocytes was evaluated by neurosphere assay. Our study shows that MSC prevented astrogliosis, reduced mRNA expression of inflammatory cytokines that sustain immune cell infiltration in EAE, as well as protein expression of endothelin-1, an astrocyte-derived factor that inhibits remyelination and contributes to neurodegeneration and disease progression in MS. Moreover, our data reveal that MSC promoted the acquisition of progenitor traits by astrocytes. These data indicate that MSC attenuate detrimental features of reactive astroglia and, based on the reacquisition of stem cell properties, also suggest that astrocytes may be empowered in their protective and reparative actions by MSC.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Células Madre Mesenquimatosas , Esclerosis Múltiple , Animales , Astrocitos , Ratones , Ratones Endogámicos C57BL , Fenotipo
5.
Biochem Soc Trans ; 49(1): 477-484, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33449117

RESUMEN

The myokine Irisin, produced during physical exercise, has an anabolic effect on bone, both in vitro and in vivo. Very recently, using a controlled in vitro 3D cell model to mimic the bone microenvironment aboard the International Space Station, it has been shown that Irisin treatment in microgravity prevents the down-regulation of the transcription factors Atf4, Runx2 and Osterix, as well as Collagen I and Osteoprotegerin proteins, crucial for osteoblast differentiation in physiologic conditions. Irisin action has also been investigated in human subjects, in which it correlates with bone health status, supporting its physiological importance also in human bone, both in healthy subjects and in patients suffering from diseases related to bone metabolism, such as hyperparathyroidism and type 1 diabetes. Low levels of circulating Irisin have been found in post-menopausal women affected by hyperparathyroidism. Furthermore, Irisin is positively correlated with bone strength in athletes and bone mineral density in football players. Moreover, in healthy children, Irisin is positively associated with bone mineral status and in children with type 1 diabetes, Irisin is positively correlated with improved glycemic control and skeletal health. In this review, we will focus on recent findings about Irisin action on microgravity induced bone loss and on osteocyte activity and survival through its αV/ß5 integrin receptor.


Asunto(s)
Huesos/efectos de los fármacos , Fibronectinas/farmacología , Animales , Densidad Ósea/efectos de los fármacos , Enfermedades Óseas Metabólicas/etiología , Enfermedades Óseas Metabólicas/metabolismo , Enfermedades Óseas Metabólicas/patología , Huesos/citología , Diferenciación Celular/efectos de los fármacos , Niño , Femenino , Fibronectinas/metabolismo , Fibronectinas/fisiología , Humanos , Persona de Mediana Edad , Osteocitos/citología , Osteocitos/efectos de los fármacos , Osteocitos/fisiología
6.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34639200

RESUMEN

To date, pharmacological strategies designed to accelerate bone fracture healing are lacking. We subjected 8-week-old C57BL/6 male mice to closed, transverse, mid-diaphyseal tibial fractures and treated them with intraperitoneal injection of a vehicle or r-irisin (100 µg/kg/weekly) immediately following fracture for 10 days or 28 days. Histological analysis of the cartilaginous callus at 10 days showed a threefold increase in Collagen Type X (p = 0.0012) and a reduced content of proteoglycans (40%; p = 0.0018). Osteoclast count within the callus showed a 2.4-fold increase compared with untreated mice (p = 0.026), indicating a more advanced stage of endochondral ossification of the callus during the early stage of fracture repair. Further evidence that irisin induced the transition of cartilage callus into bony callus was provided by a twofold reduction in the expression of SOX9 (p = 0.0058) and a 2.2-fold increase in RUNX2 (p = 0.0137). Twenty-eight days post-fracture, microCT analyses showed that total callus volume and bone volume were increased by 68% (p = 0.0003) and 67% (p = 0.0093), respectively, and bone mineral content was 74% higher (p = 0.0012) in irisin-treated mice than in controls. Our findings suggest that irisin promotes bone formation in the bony callus and accelerates the fracture repair process, suggesting a possible use as a novel pharmacologic modulator of fracture healing.


Asunto(s)
Cartílago/citología , Fibronectinas/administración & dosificación , Curación de Fractura , Fracturas Óseas/terapia , Osteoclastos/citología , Osteogénesis , Proteínas Recombinantes/administración & dosificación , Animales , Cartílago/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoclastos/metabolismo
7.
Neurobiol Dis ; 139: 104821, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32088380

RESUMEN

BACKGROUND AND AIM: Patients with Parkinson's disease (PD) are often characterized by functional gastrointestinal disorders. Such disturbances can occur at all stages of PD and precede the typical motor symptoms of the disease by many years. However, the morphological alterations associated with intestinal disturbances in PD are undetermined. This study examined the remodelling of colonic wall in 6-hydroxydopamine (6-OHDA)-induced PD rats. METHODS: 8 weeks after 6-OHDA injection animals were sacrificed. Inflammatory infiltrates, collagen deposition and remodelling of intestinal epithelial barrier and tunica muscularis in the colonic wall were assessed by histochemistry, immunohistochemistry, immunofluorescence and western blot analysis. RESULTS: 6-OHDA rats displayed significant alterations of colonic tissues as compared with controls. Signs of mild inflammation (eosinophil infiltration) and a transmural deposition of collagen fibres were observed. Superficial colonic layers were characterized by severe morphological alterations. In particular, lining epithelial cells displayed a reduced claudin-1 and transmembrane 16A/Anoctamin 1 (TMEM16A/ANO1) expression; goblet cells increased their mucin expression; colonic crypts were characterized by an increase in proliferating epithelial cells; the density of S100-positive glial cells and vimentin-positive fibroblast-like cells was increased as well. Several changes were found in the tunica muscularis: downregulation of α-smooth muscle actin/desmin expression and increased proliferation of smooth muscle cells; increased vimentin expression and proliferative phenotype in myenteric ganglia; reduction of interstitial cells of Cajal (ICCs) density. CONCLUSIONS: A pathological remodelling occurs in the colon of 6-OHDA rats. The main changes include: enhanced fibrotic deposition; alterations of the epithelial barrier; activation of mucosal defense; reduction of ICCs. These results indicate that central nigrostriatal denervation is associated with histological changes in the large bowel at mucosal, submucosal and muscular level. These alterations might represent morphological correlates of digestive symptoms in PD.


Asunto(s)
Colon/patología , Neuronas Dopaminérgicas/patología , Animales , Anoctamina-1 , Colon/metabolismo , Dopamina/metabolismo , Fibrosis , Enfermedades Gastrointestinales/metabolismo , Motilidad Gastrointestinal , Masculino , Oxidopamina , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Ratas , Ratas Sprague-Dawley , Sustancia Negra
8.
Int J Med Sci ; 17(2): 153-160, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32038098

RESUMEN

Aims: Systemic Lupus Erythematosus (SLE) is a connective tissue disease characterized by a wide range of pleomorphic pictures, including mucocutaneous, renal, musculoskeletal and neurological symptoms. It involves oral tissues, with hyposalivation, tooth decay, gingivitis, angular cheilitis, ulcers and glossitis. Temporomandibular disorders represent a heterogeneous group of inflammatory or degenerative diseases of the stomatognatic system, with algic and/or dysfunctional clinical features involving temporomandibular joint (TMJ) and related masticatory muscles. The aim of this study was to investigate the prevalence of oral manifestations and temporomandibular disorders (TMD) in SLE patients (Lp) compared with a control group. Methods: Fifty-five patients (9 men and 46 women) with diagnosed Lupus were recruited in the study group. A randomly selected group of 55 patients, matched by sex and age, served as control group. The examination for TMD symptoms and signs was based on the standardized Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD) through a questionnaire and clinical examination. Results: Lupus patients complained more frequently (95.8%) of oral and TMJ symptoms (dysgeusia, stomatodynia, masticatory muscle pain during function, neck and shoulder muscles pain and presence of tinnitus) but only xerostomia (χ2=4,1548 p=0,0415), temple headache (χ2=4,4542 p=0,035) and the sensation of a stuck jaw (Mid-p-test p=0,043) were significant. About signs, cheilitis (p=0,0284) oral ulcers (χ2=4,0104 p=0,045) and fissured tongue are significantly more frequent in study group. The salivary flow was significantly decreased in the study group respect to the control one (p<0.0001). As regard to the oral kinematics, restricted movements (RM) in protrusion and left lateral movement were significantly different between study group and controls. In particular, 85,2% of Lp showed limited protrusion versus 56,4% of controls (χ2= 10,91 p<0,001); 59,3% of Lp had also a limitation during left lateral movement versus 47,3% of controls (T=2,225 p=0,0282). About bruxism, only the indentations on the lateral edges of the tongue were found in Lp group (72,7%), with a significant difference respect to controls (χ2=7,37 p=0,007). Conclusions: While masticatory muscles have an overlapping behavior in both groups, the findings collected show a more severe TMJ kinematic impairment in Lp than in controls, with protrusion and left lateral movements significantly different. In addition, a remarkable reduction of salivary flow has been detected in Lp compared to controls. In conclusion, this autoimmune disease seems to play a role in oral manifestations and TMJ disorders, causing an increase in orofacial pain and an altered chewing function.


Asunto(s)
Bruxismo/fisiopatología , Dolor Facial/fisiopatología , Lupus Eritematoso Sistémico/fisiopatología , Trastornos de la Articulación Temporomandibular/fisiopatología , Adulto , Bruxismo/complicaciones , Bruxismo/diagnóstico , Dolor Facial/complicaciones , Dolor Facial/diagnóstico , Femenino , Cefalea/complicaciones , Cefalea/fisiopatología , Humanos , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/diagnóstico , Masculino , Masticación , Músculos Masticadores/fisiopatología , Persona de Mediana Edad , Rango del Movimiento Articular/fisiología , Encuestas y Cuestionarios , Articulación Temporomandibular/fisiopatología , Trastornos de la Articulación Temporomandibular/complicaciones , Trastornos de la Articulación Temporomandibular/diagnóstico , Enfermedades Dentales/complicaciones , Enfermedades Dentales/diagnóstico , Enfermedades Dentales/fisiopatología , Xerostomía/complicaciones , Xerostomía/diagnóstico , Xerostomía/fisiopatología
9.
Exp Cell Res ; 343(2): 190-207, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27015747

RESUMEN

The blood-brain barrier (BBB) is altered in mdx mouse, an animal model to study Duchenne muscular dystrophy (DMD). Our previous work demonstrated that perivascular glial endfeet control the selective exchanges between blood and neuropil as well as the BBB development and integrity; the alterations of dystrophin and dystrophin-associated protein complex (DAPs) in the glial cells of mdx mouse, parallel damages of the BBB and increase in vascular permeability. The aim of this study was to improve our knowledge about brain cellular components in the mdx mouse through the isolation, for the first time, of the adult neural stem cells (ANSCs). We characterized them by FACS, electron microscopy, confocal immunofluorescence microscopy, Real Time-PCR and western blotting, and we studied the expression of the DAPs aquaporin-4 (AQP4), potassium channel Kir4.1, α- and ß-dystroglycan (αDG, ßDG), α-syntrophin (αSyn), and short dystrophin isoform Dp71 proteins. The results showed that the mdx ANSCs expressed CD133 and Nestin receptor as the control ones, but showed a reduction in Notch receptor and altered cell proliferation with an increment in the apoptotic nuclei. Ultrastructurally, they appeared 50% size reduced compared to control ones, with a few cytoplasmic organelles. Moreover, the mdx ANSCs are devoid in full length dystrophin 427, and they expressed post-transcriptional reduction in the Dp71 in parallel with the ubiquitin proteasome activation, and decrement of DAPs proteins which appeared diffused in the cytoplasm and not polarized on the stem cells plasmamembrane, as prevalently observed in the controls. Overall, these results indicate that structural and molecular alterations affect the neural stem cells in the dystrophic brain, whose increased apoptosis and reduced Dp71 and DAPs proteins expression, together with loss in Dp427 dystrophin, could be responsible of the altered mdx glial maintenance and differentiation and consequent failure in the vessels barrier control occurring in the adult dystrophic brain.


Asunto(s)
Separación Celular/métodos , Distrofia Muscular Animal/patología , Células-Madre Neurales/citología , Antígeno AC133/metabolismo , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Acuaporina 4/metabolismo , Western Blotting , Proteínas de Unión al Calcio , Diferenciación Celular , Distroglicanos/metabolismo , Distrofina/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas de la Membrana , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Proteínas Musculares , Distrofia Muscular Animal/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/ultraestructura , Canales de Potasio de Rectificación Interna/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Esferoides Celulares/citología , Esferoides Celulares/ultraestructura , Ubiquitina/metabolismo
10.
Acta Neuropathol ; 132(1): 23-42, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27026411

RESUMEN

In adult CNS, nerve/glial-antigen 2 (NG2) is expressed by oligodendrocyte progenitor cells (OPCs) and is an early marker of pericyte activation in pathological conditions. NG2 could, therefore, play a role in experimental autoimmune encephalomyelitis (EAE), a disease associated with increased blood-brain barrier (BBB) permeability, inflammatory infiltrates, and CNS damage. We induced EAE in NG2 knock-out (NG2KO) mice and used laser confocal microscopy immunofluorescence and morphometry to dissect the effect of NG2 KO on CNS pathology. NG2KO mice developed milder EAE than their wild-type (WT) counterparts, with less intense neuropathology associated with a significant improvement in BBB stability. In contrast to WT mice, OPC numbers did not change in NG2KO mice during EAE. Through FACS and confocal microscopy, we found that NG2 was also expressed by immune cells, including T cells, macrophages, and dendritic cells (DCs). Assessment of recall T cell responses to the encephalitogen by proliferation assays and ELISA showed that, while WT and NG2KO T cells proliferated equally to the encephalitogenic peptide MOG35-55, NG2KO T cells were skewed towards a Th2-type response. Because DCs could be responsible for this effect, we assessed their expression of IL-12 by PCR and intracellular FACS. IL-12-expressing CD11c+ cells were significantly decreased in MOG35-55-primed NG2KO lymph node cells. Importantly, in WT mice, the proportion of IL-12-expressing cells was significantly lower in CD11c+ NG2- cells than in CD11c+ NG2+ cells. To assess the relevance of NG2 at immune system and CNS levels, we induced EAE in bone-marrow chimeric mice, generated with WT recipients of NG2KO bone-marrow cells and vice versa. Regardless of their original phenotype, mice receiving NG2KO bone marrow developed milder EAE than those receiving WT bone marrow. Our data suggest that NG2 plays a role in EAE not only at CNS/BBB level, but also at immune response level, impacting on DC activation and thereby their stimulation of reactive T cells, through controlling IL-12 expression.


Asunto(s)
Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Animales , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/patología , Células de la Médula Ósea/inmunología , Trasplante de Médula Ósea , Células Dendríticas/patología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Índice de Severidad de la Enfermedad , Médula Espinal/inmunología , Médula Espinal/patología , Linfocitos T/inmunología , Linfocitos T/patología
11.
J Cell Mol Med ; 19(2): 485-500, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25521239

RESUMEN

Bowel inflammatory fibrosis has been largely investigated, but an integrated assessment of remodelling in inflamed colon is lacking. This study evaluated tissue and cellular changes occurring in colonic wall upon induction of colitis, with a focus on neuromuscular compartment. Colitis was elicited in rats by 2,4-dinitrobenzenesulfonic acid (DNBS). After 6 and 21 days, the following parameters were assessed on paraffin sections from colonic samples: tissue injury and inflammatory infiltration by histology; collagen and elastic fibres by histochemistry; HuC/D, glial fibrillar acidic protein (GFAP), proliferating cell nuclear antigen (PCNA), nestin, substance P (SP), von Willebrand factor, c-Kit and transmembrane 16A/Anoctamin1 (TMEM16A/ANO1) by immunohistochemistry. TMEM16A/ANO1 was also examined in isolated colonic smooth muscle cells (ICSMCs). On day 6, inflammatory alterations and fibrosis were present in DNBS-treated rats; colonic wall thickening and fibrotic remodelling were evident on day 21. Colitis was associated with both an increase in collagen fibres and a decrease in elastic fibres. Moreover, the neuromuscular compartment of inflamed colon displayed a significant decrease in neuron density and increase in GFAP/PCNA-positive glia of myenteric ganglia, enhanced expression of neural SP, blood vessel remodelling, reduced c-Kit- and TMEM16A/ANO1-positive interstitial cells of Cajal (ICCs), as well as an increase in TMEM16A/ANO1 expression in muscle tissues and ICSMCs. The present findings provide an integrated view of the inflammatory and fibrotic processes occurring in the colonic neuromuscular compartment of rats with DNBS-induced colitis. These morphological alterations may represent a suitable basis for understanding early pathophysiological events related to bowel inflammatory fibrosis.


Asunto(s)
Colitis/patología , Miocitos del Músculo Liso/patología , Animales , Colon/patología , Inflamación/patología , Masculino , Ratas , Ratas Sprague-Dawley
12.
J Inherit Metab Dis ; 36(3): 455-66, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23344887

RESUMEN

This study investigates glio-vascular interactions in human fetal brain at midgestation, specifically examining the expression and immunolocalization of the CXCL12/CXCR4/CXCR7 ligand-receptor axis and its possible role in the vascular patterning of the developing brain. At midgestation, the telencephalic vesicles are characterized by well developed radial glia cells (RGCs), the first differentiated astrocytes and a basic vascular network mainly built of radial vessels. RGCs have been recognized to contribute to cerebral cortex neuro-vascular architecture and have also been demonstrated to act as a significant source of neural cells (Rakic, Brain Res 33:471-476, 1971; Malatesta et al, Development 127:5253-5263, 2000). According to our hypothesis CXCL12, a potent migration and differentiation chemokine released by RGCs, may act as a linking factor coordinating neuroblast migration with vessel growth and patterning through the activation of different ligand/receptor axes. The obtained results support this hypothesis showing that together with CXCR4/CXCR7-reactive neuroblasts, which migrate in close association with CXCL12 RGCs, layer-specific subsets of CXCL12 RGCs and astrocytes specifically contact the microvessel wall. Moreover, the CXCL12/CXCR4/CXCR7 system appears to be directly involved in microvessel growth, its members being differentially expressed in angiogenically activated microvessels and vascular sprouts.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/embriología , Comunicación Celular/fisiología , Quimiocina CXCL12/fisiología , Receptores CXCR4/fisiología , Receptores CXCR/fisiología , Vasos Sanguíneos/embriología , Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiología , Encéfalo/metabolismo , Encéfalo/patología , Quimiocina CXCL12/metabolismo , Feto/metabolismo , Feto/patología , Edad Gestacional , Humanos , Inmunohistoquímica , Ligandos , Neovascularización Fisiológica/fisiología , Neuroglía/metabolismo , Neuroglía/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Receptores CXCR/metabolismo , Receptores CXCR4/metabolismo , Transducción de Señal/fisiología
13.
Methods Mol Biol ; 2572: 101-116, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36161411

RESUMEN

Vascular co-option is a non-angiogenic mechanism whereby tumor growth and progression move on by hijacking the pre-existing and nonmalignant blood vessels and is employed by various tumors to grow and metastasize.The histopathological identification of co-opted blood vessels is complex, and no specific markers were defined, but it is critical to develop new and possibly more effective therapeutic strategies. Here, in glioblastoma, we show that the co-opted blood vessels can be identified, by double immunohistochemical staining, as weak CD31+ vessels with reduced P-gp expression and proliferation and surrounded by highly proliferating and P-gp- or S100A10-expressing tumor cells. Results can be quantified by the Aperio Colocalization algorithm, which is a valid and robust method to handle and investigate large data sets.


Asunto(s)
Glioblastoma , Neovascularización Patológica , Formaldehído , Humanos , Neovascularización Patológica/patología , Adhesión en Parafina , Coloración y Etiquetado
14.
Neuroscientist ; : 10738584231163460, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37052336

RESUMEN

Several studies have provided interesting evidence about the role of the bidirectional communication between the gut and brain in the onset and development of several pathologic conditions, including inflammatory bowel diseases (IBDs), neurodegenerative diseases, and related comorbidities. Indeed, patients with IBD can experience neurologic disorders, including depression and cognitive impairment, besides typical intestinal symptoms. In parallel, patients with neurodegenerative disease, such as Parkinson disease and Alzheimer disease, are often characterized by the occurrence of functional gastrointestinal disorders. In this context, enteric glial cells and brain astrocytes are emerging as pivotal players in the initiation/maintenance of neuroinflammatory responses, which appear to contribute to the alterations of intestinal and neurologic functions observed in patients with IBD and neurodegenerative disorders. The present review was conceived to provide a comprehensive and critical overview of the available knowledge on the morphologic, molecular, and functional changes occurring in the enteric glia and brain astroglia in IBDs and neurologic disorders. In addition, our intent is to identify whether such alterations could represent a common denominator involved in the onset of comorbidities associated with the aforementioned disorders. This might help to identify putative targets useful to develop novel pharmacologic approaches for the therapeutic management of such disturbances.

15.
Eur J Transl Myol ; 33(3)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37522802

RESUMEN

The autophagy process recycles dysfunctional cellular components and protein aggregates by sequestering them in autophagosomes directed to lysosomes for enzymatic degradation. A basal level of autophagy is essential for skeletal muscle maintenance. Increased autophagy occurs in several forms of muscular dystrophy and in the merosin-deficient congenital muscular dystrophy 1A mouse model (dy3k/dy3k) lacking the laminin-α2 chain. This pilot study aimed to compare autophagy marker expression and autophagosomes presence using light and electron microscopes and western blotting in diagnostic muscle biopsies from newborns affected by different congenital muscular myopathies and dystrophies. Morphological examination showed dystrophic muscle features, predominance of type 2A myofibers, accumulation of autophagosomes in the subsarcolemmal areas, increased number of autophagosomes overexpressing LC3b, Beclin-1 and ATG5, in the merosin-deficient newborn suggesting an increased autophagy. In Duchenne muscular dystrophy, nemaline myopathy, and spinal muscular atrophy the predominant accumulation of p62+ puncta rather suggests an autophagy impairment.

16.
JCI Insight ; 8(8)2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36917178

RESUMEN

Glioblastomas are among the deadliest human cancers and are highly vascularized. Angiogenesis is dynamic during brain development, almost quiescent in the adult brain but reactivated in vascular-dependent CNS pathologies, including brain tumors. The oncofetal axis describes the reactivation of fetal programs in tumors, but its relevance in endothelial and perivascular cells of the human brain vasculature in glial brain tumors is unexplored. Nucleolin is a regulator of cell proliferation and angiogenesis, but its roles in the brain vasculature remain unknown. Here, we studied the expression of Nucleolin in the neurovascular unit in human fetal brains, adult brains, and human gliomas in vivo as well as its effects on sprouting angiogenesis and endothelial metabolism in vitro. Nucleolin is highly expressed in endothelial and perivascular cells during brain development, downregulated in the adult brain, and upregulated in glioma. Moreover, Nucleolin expression correlated with glioma malignancy in vivo. In culture, siRNA-mediated Nucleolin knockdown reduced human brain endothelial cell (HCMEC) and HUVEC sprouting angiogenesis, proliferation, filopodia extension, and glucose metabolism. Furthermore, inhibition of Nucleolin with the aptamer AS1411 decreased brain endothelial cell proliferation in vitro. Mechanistically, Nucleolin knockdown in HCMECs and HUVECs uncovered regulation of angiogenesis involving VEGFR2 and of endothelial glycolysis. These findings identify Nucleolin as a neurodevelopmental factor reactivated in glioma that promotes sprouting angiogenesis and endothelial metabolism, characterizing Nucleolin as an oncofetal protein. Our findings have potential implications in the therapeutic targeting of glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Glioma/metabolismo , Fosfoproteínas/metabolismo , Encéfalo/metabolismo , Neoplasias Encefálicas/patología , Nucleolina
17.
Angiogenesis ; 15(4): 761-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22886085

RESUMEN

During human foetal brain vascularization, activated CD31+/CD105+ endothelial cells are characterized by the emission of filopodial processes which also decorate the advancing tip of the vascular sprout. Together with filopodia, both the markers also reveal a number of plasma membrane-derived microvesicles (MVs) which are concentrated around the tip cell tuft of processes. At this site, MVs appear in tight contact with endothelial filopodia and follow these long processes, advancing into the surrounding neuropil to a possible cell target. These observations suggest that, like shedding vesicles of many other cell types that deliver signalling molecules and play a role in cell-to-cell communication, MVs sent out from endothelial tip cells could be involved in tip cell guidance and/or act on target cells, regulating cell-to-cell mutual recognition during vessel sprouting and final anastomosis. The results also suggest a new role for tip cell filopodia as conveyor processes for transporting MVs far from the cell of origin in a controlled microenvironment. Additional studies focused on the identification of MV content are needed to ultimately clarify the significance of tip cell MVs during human brain vascularization.


Asunto(s)
Membrana Celular/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/inmunología , Técnica del Anticuerpo Fluorescente , Humanos , Microscopía Confocal , Microscopía Electrónica de Transmisión , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/inmunología
19.
Cells ; 11(10)2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35626743

RESUMEN

Successful neuroprotection is only possible with contemporary microvascular protection. The prevention of disease-induced vascular modifications that accelerate brain damage remains largely elusive. An improved understanding of pericyte (PC) signalling could provide important insight into the function of the neurovascular unit (NVU), and into the injury-provoked responses that modify cell-cell interactions and crosstalk. Due to sharing the same basement membrane with endothelial cells, PCs have a crucial role in the control of endothelial, astrocyte, and oligodendrocyte precursor functions and hence blood-brain barrier stability. Both cerebrovascular and neurodegenerative diseases impair oxygen delivery and functionally impair the NVU. In this review, the role of PCs in central nervous system health and disease is discussed, considering their origin, multipotency, functions and also dysfunction, focusing on new possible avenues to modulate neuroprotection. Dysfunctional PC signalling could also be considered as a potential biomarker of NVU pathology, allowing us to individualize therapeutic interventions, monitor responses, or predict outcomes.


Asunto(s)
Células Endoteliales , Pericitos , Astrocitos , Barrera Hematoencefálica/patología , Comunicación Celular , Células Endoteliales/fisiología , Pericitos/patología
20.
Diagnostics (Basel) ; 12(12)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36553127

RESUMEN

BACKGROUND: Vascular co-option is one of the main features of brain tumor progression. It is identified using histopathological analysis, but no antibody-specific markers were found, and no universally accepted histological features were defined. METHODS: We employed double immunohistochemical stainings for CD31, P-gp, S100A10, and mitochondria on formalin-fixed, paraffin-embedded human samples of IDH-WT glioblastoma, IDH-mutant astrocytoma, and meningioma to study vascular co-option across different brain tumors and across normal, peritumoral, and intratumoral areas using the Aperio colocalization algorithm, which is a valid and robust method to handle and investigate large data sets. RESULTS: The results have shown that (i) co-opted vessels could be recognized by the presence of metabolically overactive (evaluated as mitochondria expression) and P-gp+ or S100A10+ tumor cells surrounding CD31+ endothelial cells; (ii) vascular co-option occurs in the intratumoral area of meningioma and astrocytoma; and (iii) vascular co-option is prevalent in peritumoral glioblastoma area. CONCLUSIONS: The described approach identifies new markers for cellular components of the vessel wall and techniques that uncover the order and localization of vascularization mechanisms, which may contribute to developing new and possibly more effective therapeutic strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA